K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2020

Ta có: \(\frac{3\left(2y-3\right)}{5}-7=\frac{2\left(y-4\right)}{3}+\frac{3y+13}{8}\)

\(\Leftrightarrow y=49\)

6 tháng 12 2020

a, \(N=\left(\frac{1}{y-1}-\frac{y}{1-y^3}.\frac{y^2+y+1}{y+1}\right):\frac{1}{y^2-1}\)

\(=\left(\frac{1}{y-1}-\frac{y}{\left(1-y\right)\left(1+y+y^2\right)}.\frac{y^2+y+1}{y+1}\right):\frac{1}{\left(y-1\right)\left(y+1\right)}\)

\(=\left(\frac{1}{y-1}+\frac{y\left(y^2+y+1\right)}{\left(y+1\right)^2\left(y^2+y+1\right)}\right):\frac{1}{\left(y-1\right)\left(y+1\right)}\)

\(=\left(\frac{1}{y-1}+\frac{y}{\left(y+1\right)^2}\right):\frac{1}{\left(y-1\right)\left(x+1\right)}\)

\(=\left(\frac{\left(y+1\right)^2+y\left(y-1\right)}{\left(y-1\right)\left(y+1\right)^2}\right).\frac{\left(y-1\right)\left(y+1\right)}{1}=\frac{y^2+2y+1+y^2-y}{y+1}=\frac{2y^2+y+1}{y+1}\)

b, Thay y = 1/2 ta có : 

\(\frac{2.\left(\frac{1}{2}\right)^2+\frac{1}{2}+1}{\frac{1}{2}+1}=\frac{\frac{1}{2}+\frac{1}{2}+\frac{2}{2}}{\frac{1}{2}+\frac{2}{2}}=\frac{\frac{5}{2}}{\frac{3}{2}}=\frac{5}{12}\)

13 tháng 2 2020

Ta có phương trình ẩn y:

\(\frac{y+5}{y-1}-\frac{y+1}{y-3}=\frac{-8}{\left(y-1\right)\left(y-3\right)}\)\(\left(ĐK:y\ne1;y\ne3\right)\)

\(\Rightarrow\frac{\left(y+5\right)\left(y-3\right)-\left(y+1\right)\left(y-1\right)}{\left(y-1\right)\left(y-3\right)}=\frac{-8}{\left(y-1\right)\left(y-3\right)}\)

\(\Rightarrow\left(y+5\right)\left(y-3\right)-\left(y+1\right)\left(y-1\right)=-8\)

\(\Rightarrow\left(y^2+2y-15\right)-\left(y^2-1\right)=-8\)

\(\Rightarrow y^2+2y-15-y^2+1=-8\Leftrightarrow2y-14=-8\)

\(\Leftrightarrow2y=6\Leftrightarrow y=3\)(ktm)

Vậy không có y để \(\frac{y+5}{y-1}-\frac{y+1}{y-3}=\frac{-8}{\left(y-1\right)\left(y-3\right)}\)

\(\frac{y+5}{y-1}-\frac{y+1}{y-3}=\frac{-8}{\left(y-1\right)\left(y-3\right)}ĐKXĐ:y\ne1;3\)

\(\left(y+5\right)\left(y-3\right)-\left(y+1\right)\left(y-1\right)=-8\)

\(2y-14=-8\)

\(2y=6\)

\(y=3\)Theo ĐKXĐ => vô nghiệm 

21 tháng 2 2023

\(a,\dfrac{y-1}{y-2}-\dfrac{y+3}{y-4}=\dfrac{-2}{\left(y-2\right)\left(y-4\right)}\)

\(\Leftrightarrow\dfrac{\left(y-1\right)\left(y-4\right)-\left(y+3\right)\left(y-2\right)+2}{\left(y-2\right)\left(y-4\right)}=0\)\(\left(dkxd:y\ne4;2\right)\)

\(\Leftrightarrow y^2-4y-y+4-y^2+2y-3y+6+2=0\)

\(\Leftrightarrow-6y+12=0\)

\(\Leftrightarrow y=2\)\(\left(ktm\right)\)

Vậy ko có bất kì giá trị y nào để 2 biểu thức bằng nhau

\(b,\dfrac{8y}{y-7}+\dfrac{1}{7-y}=8\)

\(\Leftrightarrow\dfrac{8y}{y-7}-\dfrac{1}{y-7}=8\)\(\left(dkxd:y\ne7\right)\)

\(\Leftrightarrow8y-1-8\left(y-7\right)=0\)

\(\Leftrightarrow8y-1-8y+56=0\)(Vô lý)

Vậy ko có bất kì giá trị y nào để biểu thức có giá trị = 8

 

AH
Akai Haruma
Giáo viên
8 tháng 5 2020

Lời giải:

Cần giải pt \(\frac{3(2y-3)}{5}=\frac{2(y-4)}{3}+\frac{3y+13}{8}+7\)

\(\Leftrightarrow \frac{6y-9}{5}=\frac{2y-8}{3}+\frac{3y+13}{8}+7\)

\(\Leftrightarrow \frac{6}{5}y-\frac{9}{5}=\frac{25}{24}y+\frac{143}{24}\)

\(\Leftrightarrow \frac{19}{120}y=\frac{931}{120}\Rightarrow 19y=931\Rightarrow y=49\)

Vậy.............

30 tháng 11 2019

a)\(A=\left(\frac{x+y}{x-2y}+\frac{3y}{2y-x}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)

\(=\left(\frac{x+y-3y}{x-2y}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)

\(=\left(\frac{x-2y}{x-2y}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)

\(=\left(1-3xy\right).\frac{-x-1}{1-3xy}+\frac{x^2}{x+1}\)

\(=-\left(x+1\right)+\frac{x^2}{x+1}\)`

\(=\frac{-\left(x+1\right)^2+x^2}{x+1}\)

\(=\frac{-x^2-2x-1+x^2}{x+1}\)

\(=\frac{-2x-1}{x+1}\)(1)

b) Thay \(x=-3,y=2014\)vào (1) ta được:

\(A=\frac{-2.\left(-3\right)-1}{-3+1}=\frac{-5}{2}\)

Vậy \(A=\frac{-5}{2}\)với x=-3 và y=2014