Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABC:
+ M là trung điểm của AB (gt).
+ N là trung điểm của AC (gt).
\(\Rightarrow\) MN là đường trung bình.
\(\Rightarrow\) MN // BC (Tính chất đường trung bình).
Xét tứ giác BMNC:
MN // BC (cmt).
\(\Rightarrow\) Tứ giác BMNC là hình thang.
b) Xét tứ giác AIBP:
+ M là trung điểm của AB (gt).
+ M là trung điểm của PI (P là điểm đối xứng của I qua M).
\(\Rightarrow\) Tứ giác AIBP là hình bình hành (dhnb).
Mà \(\widehat{AIB}=90^o\left(AI\perp BC\right).\)
\(\Rightarrow\) Tứ giác AIBP là hình chữ nhật (dhnb).
c) Xét tam giác ABC: MN là đường trung bình (cmt).
\(\Rightarrow\) MN = \(\dfrac{1}{2}\) BC (Tính chất đường trung bình).
Mà BK = KC = \(\dfrac{1}{2}\) BC (K là trung điểm của BC).
\(\Rightarrow\) MN = BK = KC = \(\dfrac{1}{2}\) BC.
Xét tứ giác MNKB:
+ MN = BK (cmt).
+ MN // BK (MN // BC).
\(\Rightarrow\) Tứ giác MNKB là hình bình hành (dhnb).
\(\Rightarrow\) \(\widehat{MNK}=\widehat{MBK}\) (Tính chất hình bình hành).
Mà \(\widehat{MBK}=\widehat{MIB}\) (Tứ giác AIBP là hình chữ nhật).
\(\Rightarrow\widehat{MNK}=\widehat{MIB}.\)
Lại có: \(\widehat{MIB}=\widehat{IMN}\) (MN // BC).
\(\Rightarrow\widehat{MNK}=\widehat{IMN}.\)
Xét tứ giác MNKI: MN // KI (MN // BC).
\(\Rightarrow\) Tứ giác MNKI là hình thang.
Mà \(\widehat{IMN}=\widehat{MNK}\left(cmt\right).\)
\(\Rightarrow\) Tứ giác MNKI là hình thang cân.
\(\Rightarrow\) \(\widehat{MIN}=\widehat{MKN.}\)
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó:MN là đường trung bình của ΔABC
Suy ra: MN//BC
hay BMNC là hình thang
a: Xét ΔABC có
D là tđiểm của AB
E là tđiểm của AC
Do đó: DE là đường trung bình
=>DE//FC và DE=FC
hay DECF là hình bình hành
\(a,\left\{{}\begin{matrix}AE=EB\\AF=FC\end{matrix}\right.\Rightarrow EF\) là đtb tam giác ABC
\(\Rightarrow EF//BC\Rightarrow BEFC\) là hthang
\(b,EF//BC\Rightarrow EF//GH\Rightarrow EFGH\) là hthang
Có HF là trung tuyến ứng cạnh huyền tam giác AHC nên \(HF=\dfrac{1}{2}AC\)
Mà \(\left\{{}\begin{matrix}AE=EB\\BG=GC\end{matrix}\right.\Rightarrow EG\) là đtb tg ABC \(\Rightarrow EG=\dfrac{1}{2}AC\)
Do đó \(HF=EG\) nên EFGH là hthang cân
a) Xét tam giác ABC có:
+ M là trung điểm của AB (gt).
+ N là trung điểm của AC (gt).
\(\Rightarrow\) MN là đường trung bình tam giác ABC (Định nghĩa đường trung bình tam giác).
\(\Rightarrow\) MN // BC (Tính chất đường trung bình tam giác).
Xét tứ giác BMNC có: MN // BC (cmt).
\(\Rightarrow\) Tứ giác BMNC là hình thang (dhnb).
b) Xét tứ giác tứ giác AECF có:
+ N là là trung điểm của AC (gt).
+ N là trung điểm của EF (F là điểm đối xứng của E qua N).
\(\Rightarrow\) Tứ giác AECF là hình bình hành (dhnb).
Mà \(\widehat{AEC}=90^o\) \(\left(AE\perp BC\right).\)
\(\Rightarrow\) Tứ giác AECF là hình chữ nhật (dhnb).
c) Xét tam giác AEC có:
+ N là trung điểm AC (gt).
+ ON // EC (MN // BC).
\(\Rightarrow\) O là trung điểm AE (Định lý đường thẳng đi qua trung điểm 1 cạnh và song song với cạnh thứ 2).
Tứ giác AECF là hình chữ nhật (cmt). \(\Rightarrow\) AC = EF (Tính chất hình chữ nhật).
Mà AI = AC (gt).
\(\Rightarrow\) EF = AI.
Xét tam giác AIC có: AI = AC (gt). \(\Rightarrow\) Tam giác AIC cân tại A.
Mà AE là đường cao \(\left(AE\perp BC\right)\).
\(\Rightarrow\) AE là đường trung tuyến (Tính chất các đường trong tam giác).
\(\Rightarrow\) E là trung điểm IC.
Tứ giác AFEC là hình chữ nhật (cmt). \(\Rightarrow\) AF = EC (Tính chất hình chữ nhật).
Mà IE = EC (E là trung điểm IC).
\(\Rightarrow\) AF = IE.
Xét tứ giác AFEI có:
+ AF = IE (cmt).
+ EF = AI (cmt).
\(\Rightarrow\) Tứ giác AFEI là hình bình hành (dhnb).
\(\Rightarrow\) AE và IF cắt nhau tại trung đi mỗi đường (Tính chất hình chữ nhật).
Mà O là trung điểm AE (cmt).
\(\Rightarrow\) O là trung điểm IF.
\(\Rightarrow\) O; I; F thẳng hàng (đpcm).
a) \(\Delta ABC\) có MA = MB; NA = NC
\(\Rightarrow\)MN là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\)MN // BC
\(\Rightarrow\)Tứ giác BMNC là hình thang
b) \(\Delta ABC\)có NA = NC; QB = QC
\(\Rightarrow\)NQ // AB; NQ = 1/2 AB
mà MA = 1/2 AB
\(\Rightarrow\)NQ = MA
Tứ giác AMQN có NQ // AM; NQ = AM
\(\Rightarrow\)AMQN là hình bình hành
a: Xét ΔABC có
E là trung điểm của AB
F là trung điểm của AC
Do đó: EF là đường trung bình của ΔABC
Suy ra: EF//BC
hay BEFC là hình thang
giup e cau C voi ad