Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{3}=\dfrac{z}{5}\&2x-3y+z=6\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{9}=\dfrac{y}{12}\\\dfrac{y}{12}=\dfrac{z}{20}\end{matrix}\right.\Rightarrow\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{20}\)
\(\Rightarrow\dfrac{2x}{18}=\dfrac{3y}{36}=\dfrac{z}{20}\&2x-3y+z=6\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\dfrac{2x}{18}=\dfrac{3y}{36}=\dfrac{z}{20}=\dfrac{2x-3y+z}{18-36+20}=\dfrac{6}{2}=3\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{9}=3\\\dfrac{y}{12}=3\\\dfrac{z}{20}=3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=27\\y=36\\z=60\end{matrix}\right.\)
Vậy, ...
b, \(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{5}=\dfrac{z}{7}\&2x+3y-z=186\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=\dfrac{y}{20}\\\dfrac{y}{20}=\dfrac{z}{28}\end{matrix}\right.\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)
\(\Rightarrow\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}\&2x+3y-z=186\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{186}{62}=3\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=3\\\dfrac{y}{20}=3\\\dfrac{z}{28}=3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=45\\y=60\\z=84\end{matrix}\right.\)
Vậy, ...
c, Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\Rightarrow x=2k;y=3k;z=5k\)
\(\Rightarrow xyz=2k.3k.5k=1920\Rightarrow30k^3=1920\)
\(\Rightarrow k^3=64\Rightarrow k=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.4=8\\y=3.4=12\\z=5.4=20\end{matrix}\right.\)
Vậy,...
a) x/3 = y/4 ; y/4 = z/5 và 2x - 3y + z = 6
<=> x/3 = y/4 <=> x/12 = y/16 (1)
<=> y/4 = z/5 <=> y/16 = z/20 (2)
Từ (1) và (2) suy ra : x/12 = y/16 = z/20
<=> 2x/24 = 3y/48 = z/20
Áp dụng t/c dãy tỉ số bằng nhau , ta có :
2x/24 = 3y/48 = z/20 = 2x - 3y + z / 24 - 48 + 20 = -6/4 = -3/2
<=> x/3 = -3/2 => x = -9/2
<=> y/4 = -3/2 => y = -6
<=> z/5 = -3/2 => z = -15/2
Vậy x = -9/2 , b = -6 , z = -15/2 .
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)
Áp dụng t.c của dãy tỉ só bằng nhau,ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x+y}{3+4}=\dfrac{16}{7}\)
=>\(x=\dfrac{16}{7}.3=\dfrac{48}{7}\)
\(y=\dfrac{16}{7}.4=\dfrac{64}{7}\)
\(z=\dfrac{16}{7}.5=\dfrac{80}{7}\)
Vậy...
Các câu sau tương tự
ADTC dãy tỉ số bằng nhau ta cs
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x^2+y^2}{2^2+3^2}=\frac{52}{13}=4\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{2}=4\\\frac{y}{3}=4\\\frac{z}{4}=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=8\\y=12\\z=16\end{matrix}\right.\)
a, x/y = -6/9 và x-y= 30
đổi: x/y=-6/9
= x/9 =y/-6
áp dụng t/c của dãy tỉ số bằng nhau, ta có:
x/9=y/-6=x-y/9-(-6)=30/15=2
suy ra : x/9=2 => x=9.2=18
y/-6=2 => y=-6.2=12
vậy x=18: y = 12
tích cho mih nhé ^^
a: \(\left|x+\dfrac{4}{15}\right|-\left|-3.75\right|=-\left|-2.5\right|\)
\(\Leftrightarrow\left|x+\dfrac{4}{15}\right|=-2.5+3.75=1.25=\dfrac{5}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{4}{15}=\dfrac{5}{4}\\x+\dfrac{4}{15}=-\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{59}{60}\\x=-\dfrac{91}{60}\end{matrix}\right.\)
c: \(\left|x-y\right|+\left|y+\dfrac{9}{25}\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y+\dfrac{9}{25}=0\end{matrix}\right.\Leftrightarrow x=y=-\dfrac{9}{25}\)
d: Ta có: \(\left|x\left(x^2-\dfrac{5}{4}\right)\right|=x\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=0\\x\left(x^2-\dfrac{5}{4}\right)=x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=0\\x\left(x^2-\dfrac{9}{4}\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{0;\dfrac{3}{2}\right\}\)
2.
a) \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x+3y+5z}{6+12+25}=\frac{86}{43}=2\)
\(\Rightarrow x=6;y=8;z=10\)
b) \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{18}=\frac{y}{24}\)( 1 )
\(\frac{y}{6}=\frac{z}{8}\Rightarrow\frac{y}{24}=\frac{z}{32}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{18}=\frac{y}{24}=\frac{z}{32}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{18}=\frac{y}{24}=\frac{z}{32}=\frac{3x-2y-z}{54-48-32}=\frac{13}{-26}=\frac{-1}{2}\)
\(\Rightarrow x=-9;y=-12;z=-16\)
3.
a) \(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}=\frac{2x^2+y^2+3z^2}{18+49+12}=\frac{316}{79}=4\)
\(\Rightarrow x=12;y=28;z=8\)
b) x : y : z = 2 : 5 : 7
\(\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)'
\(\Rightarrow x=6;y=15;z=21\)
2) a, \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{2x}{6}=\frac{3y}{12}=\frac{5z}{25}=\frac{2x+3y+5z}{6+12+25}=\frac{86}{43}=2\) (theo t/c dãy tỉ số bằng nhau)
=> x = 2.3 = 6 ; y = 2.4 = 8; z = 2.5 = 10
b, \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\)
\(\frac{y}{6}=\frac{z}{8}\Rightarrow\frac{y}{12}=\frac{z}{16}\)
\(\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{16}\Rightarrow\frac{3x}{27}=\frac{2y}{24}=\frac{z}{16}=\frac{3x-2y-z}{27-24-16}=\frac{13}{-13}=-1\) (theo t/c của dãy tỉ số bằng nhau)
=> x=(-1).9=-9 ; y=(-1).12=-12 ; z=(-1).16=-16
c, Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow x=2k;y=3k;z=4k\)
Ta có: xy+yz+zx=104
=> (2k)(3k) + (3k)(4k) + (4k)(2k) = 104
=> 6k2 + 12k2 + 8k2 = 104
=> k2(6+12+8) = 104
=> 26k2 = 104
=> k2 = 4
=> k = ±2
Với k = 2 thì \(\hept{\begin{cases}x=2.2=4\\y=2.3=6\\z=2.4=8\end{cases}}\)
Với k = -2 thì \(\hept{\begin{cases}x=2.\left(-2\right)=-4\\y=\left(-2\right).3=-6\\z=\left(-2\right).4=-8\end{cases}}\)
3) a, Đặt k=x/3=y/7=z/2
\(k=\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\Rightarrow k^2=\frac{x^2}{9}=\frac{y^2}{49}=\frac{z^2}{4}=\frac{2x^2}{18}=\frac{y^2}{49}=\frac{3z^2}{12}=\frac{2x^2+y^2+3z^2}{18+49+12}=\frac{316}{79}=4\)
=> k2 = 4 => k = ±2
Với k = 2 thì \(\hept{\begin{cases}\frac{x}{2}=2\Rightarrow x=4\\\frac{y}{3}=2\Rightarrow y=6\\\frac{z}{4}=2\Rightarrow z=8\end{cases}}\)
Với k = -2 thì \(\hept{\begin{cases}\frac{x}{2}=-2\Rightarrow x=-4\\\frac{y}{3}=-2\Rightarrow y=-6\\\frac{z}{4}=-2\Rightarrow z=-8\end{cases}}\)
b, \(x:y:z=2:5:7\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}\)
Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)
=> x = 2.3 = 6 ; y = 5.3 = 15 ; z = 7.3 = 21