Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Xét tử số:
$\text{TS}=1+25^4+25^8+...+25^{28}$
$25^4.\text{TS}=25^4+25^8+...+25^{32}$
$\Rightarrow \text{TS}(25^4-1)=25^{32}-1$
$\text{TS}=\frac{25^{32}-1}{25^4-1}$
Xét mẫu số:
$\text{MS}=1+25^2+..+25^{30}$
$25^2.\text{MS}=25^2+25^4+...+25^{32}$
$\Rightarrow \text{MS}(25^2-1)=25^{32}-1$
$\Rightarrow \text{MS}=\frac{25^{32}-1}{25^2-1}$
Do đó:
$A=\frac{25^{32}-1}{25^4-1}:\frac{25^{32}-1}{25^2-1}=\frac{25^2-1}{25^4-1}$
$=\frac{25^2-1}{(25^2-1)(25^2+1)}=\frac{1}{25^2+1}$
\(A=\frac{25^{28}+25^{24}+...+25^4+25^0}{25^{30}+25^{28}+...+25^2+25^0}\)
\(=\frac{25^{28}+25^{24}+...+25^0}{\left(25^{28}+25^{24}+...+25^0\right)+\left(25^{30}+23^{26}+...+25^2\right)}\)
\(=\frac{25^{28}+25^{24}+...+25^0}{\left(25^{28}+25^{24}+...+25^0\right)+25^2\left(25^{28}+23^{24}+...+25^0\right)}\)
\(=\frac{25^{28}+25^{24}+...+25^0}{\left(25^{28}+25^{24}+...+25^0\right)\left(1+25^2\right)}\)
\(=\frac{1}{1+25^2}\)
\(=\frac{1}{626}\)