K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2020

E, F, G, H, I tí nữa Thầy rảnh Thầy giải giúp nhé!

22 tháng 6 2016

\(a,\left(\frac{3}{8}+-\frac{3}{4}+\frac{7}{12}\right):\frac{5}{6}+\frac{1}{2}\)

   =  \(\left(-\frac{3}{8}+\frac{7}{12}\right):\frac{5}{6}+\frac{1}{2}\)

    = \(\frac{5}{24}:\frac{5}{6}+\frac{1}{2}\)

     = \(\frac{1}{4}+\frac{1}{2}\)

      =  \(\frac{3}{4}\)

b)\(-\frac{7}{3}.\frac{5}{9}+\frac{4}{9}.\left(-\frac{3}{7}\right)+\frac{17}{7}\)

    =\(-\frac{35}{27}+\left(-\frac{4}{21}\right)+\frac{17}{7}\)

   = \(-\frac{35}{27}+\frac{47}{21}\)

   =        \(\frac{178}{189}\)

c) \(\frac{117}{13}-\left(\frac{2}{5}+\frac{57}{13}\right)\)

  = \(\frac{117}{13}-\frac{311}{65}\)

 =       \(\frac{274}{65}\)

d) \(\frac{2}{3}-0,25:\frac{3}{4}+\frac{5}{8}.4\)

\(\frac{2}{3}-\frac{1}{4}:\frac{3}{4}+\frac{5}{8}.4\)

\(\frac{2}{3}-\frac{1}{3}+\frac{5}{2}\)

=     \(\frac{1}{3}+\frac{5}{2}\)

=         \(\frac{17}{6}\)

19 tháng 9 2023

`(2/3-0,25+2)-(2-5/2+1/4)-(2,5-1/3)`

`= 2/3 -1/4 +2-2+ 5/2 -1/4 -5/2 +1/3`

`= (2/3 +1/3) +(-1/4 -1/4) + (2-2) + (5/2-5/2)`

`= 3/3 + (-1/2) + 0 + 0`

`= 1 +(-1/2)`

`= 1/2`

DT
19 tháng 9 2023

\(\left(\dfrac{2}{3}-0,25+2\right)-\left(2-\dfrac{5}{2}+\dfrac{1}{4}\right)-\left(2,5-\dfrac{1}{3}\right)\\ =\dfrac{2}{3}-0,25+2-2+\dfrac{5}{2}-\dfrac{1}{4}-2,5+\dfrac{1}{3}\\ =\left(\dfrac{2}{3}+\dfrac{1}{3}\right)+\left(\dfrac{5}{2}-2,5\right)+\left(2-2\right)+\left(-\dfrac{1}{4}-0,25\right)\\ =\dfrac{3}{3}+\left(2,5-2,5\right)+0+\left(-\dfrac{1}{4}-\dfrac{1}{4}\right)\\ =1+0+0+\left(-\dfrac{1}{2}\right)=\dfrac{1}{2}\)

28 tháng 8 2021

Yêu cầu bài toán.

a: \(=\left(1.25\right)^{16}\cdot8^{16}\cdot8=8\cdot10^{16}\)

b: \(=\left(\dfrac{5}{2}\right)^{13}\cdot4^{13}\cdot4^2=10^{13}\cdot4^2\)

c: \(=\left(0.25\right)^4\cdot8^4\cdot8^2=2^4\cdot8^2=64\cdot16=1024\)

d: \(=\left(\dfrac{1}{2}\right)^{15}\cdot2^{18}=2^3=8\)

e: \(=\left(\dfrac{1}{3}\cdot6\right)^7\cdot\left(\dfrac{1}{2}\right)^7\cdot\dfrac{1}{2}=2^7\cdot\left(\dfrac{1}{2}\right)^7\cdot\dfrac{1}{2}=\dfrac{1}{2}\)

6 tháng 8 2016

1)

a. \(\left(3x^2-50\right)^2=5^4\)

\(\Leftrightarrow3x^4-50=625\)

\(\Leftrightarrow3x^4=675\)

\(\Leftrightarrow x^4=225\)

\(\Leftrightarrow x=\sqrt{15}\) 

2)

a. \(\frac{\left(3^4-3^3\right)^4}{27^3}=\frac{3^{16}-3^{12}}{\left(3^3\right)^3}=\frac{3^{12}.3^4-3^{12}}{3^9}=\frac{3^{12}\left(3^4-1\right)}{3^9}\)

\(=\frac{3^{12}.80}{3^9}=3^3.80=27.80=2160\)

b. \(\frac{25^3}{\left(5^5-5^3\right)^2}=\frac{\left(5^2\right)^3}{5^{10}-5^6}=\frac{5^6}{5^6.5^4-5^6}=\frac{5^6}{5^6\left(5^4-1\right)}\)

\(=\frac{5^6}{5^6.624}=\frac{1}{624}\)

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

a)

\(\dfrac{1}{2}{x^2}.\dfrac{6}{5}{x^3} = \dfrac{1}{2}.\dfrac{6}{5}.{x^2}.{x^3} = \dfrac{3}{5}{x^5}\);                                                   

b)

\(\begin{array}{l}{y^2}(\dfrac{5}{7}{y^3} - 2{y^2} + 0,25) = {y^2}.\dfrac{5}{7}{y^3} - {y^2}.2{y^2} + {y^2}.0,25)\\ = \dfrac{5}{7}{y^5} - 2{y^4} + 0,25{y^2}\end{array}\);

c)

\(\begin{array}{l}(2{x^2} + x + 4)({x^2} - x - 1) \\= 2{x^2}({x^2} - x - 1) + x({x^2} - x - 1) + 4({x^2} - x - 1)\\ = 2{x^4} - 2{x^3} - 2{x^2} + {x^3} - {x^2} - x + 4{x^2} - 4x - 4 \\= 2{x^4} - {x^3} + {x^2} - 5x - 4\end{array}\);                                                               

d)

\(\begin{array}{l}(3x - 4)(2x + 1) - (x - 2)(6x + 3) \\= 3x(2x + 1) - 4(2x + 1) - x(6x + 3) + 2(6x + 3)\\ = 6{x^2} + 3x - 8x - 4 - 6{x^2} - 3x + 12x + 6\\ = 4x + 2\end{array}\).

19 tháng 9 2018

Bài 1:

\(A=2x+2y-y\)

\(A=2x+y\)

Thay x = 2,5 và y = 3/4 vào A

\(A=2.2,5+\dfrac{3}{4}\)

\(A=5+\dfrac{3}{4}\)

\(A=\dfrac{23}{4}\)

\(B=\dfrac{5a}{3}-\dfrac{3}{b}\)

Thay a = 1/3 và b = 0,25 vào B

\(B=\dfrac{5.\dfrac{1}{3}}{3}-\dfrac{3}{0,25}\)

\(B=\dfrac{5}{9}-12\)

\(B=-\dfrac{103}{9}\)

Bài 2:

a) \(\left(2x-\dfrac{1}{2}\right).2+\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}\right):\dfrac{1}{8}=1\)

\(\Rightarrow4x-1+\dfrac{26}{3}=1\)

\(\Rightarrow4x+\dfrac{23}{3}=1\)

\(\Rightarrow4x=1-\dfrac{23}{3}\)

\(\Rightarrow4x=-\dfrac{20}{3}\)

\(\Rightarrow x=-\dfrac{5}{3}\)

b) \(\dfrac{x+1}{65}+\dfrac{x+3}{63}=\dfrac{x+5}{61}+\dfrac{x+7}{59}\)

\(\Rightarrow\dfrac{x+1}{65}+1+\dfrac{x+3}{63}+1=\dfrac{x+5}{61}+1+\dfrac{x+7}{59}+1\)

\(\Rightarrow\dfrac{x+66}{65}+\dfrac{x+66}{63}=\dfrac{x+66}{61}+\dfrac{x+66}{59}\)

\(\Rightarrow\left(x+66\right)\left(\dfrac{1}{65}+\dfrac{1}{63}\right)=\left(x+66\right)\left(\dfrac{1}{61}+\dfrac{1}{59}\right)\)

\(\Rightarrow\left(x+66\right)\left(\dfrac{1}{65}+\dfrac{1}{63}\right)-\left(x+66\right)\left(\dfrac{1}{61}+\dfrac{1}{59}\right)=0\)

\(\Rightarrow\left(x+66\right)\left(\dfrac{1}{65}+\dfrac{1}{63}-\dfrac{1}{61}-\dfrac{1}{59}\right)=0\)

\(\dfrac{1}{65}+\dfrac{1}{63}-\dfrac{1}{61}-\dfrac{1}{59}\ne0\)

\(\Rightarrow x+66=0\)

\(\Rightarrow x=-66\)

Bài 3:

\(A=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{n}\right)\)

\(A=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{n-1}{n}\)

\(A=\dfrac{1}{n}\)