Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,[(4x+28):3+55]:5=35
(4x+28):3+55=175
(4x+28):3=120
4x+28=360
4x=332
x=83
a) [( 4x + 28 ) : 3 + 55] : 5 = 35
( 4x + 28 ) : 3 + 55 = 175
( 4x + 28 ) : 3 = 120
4x + 28 = 360
4x = 332
x = 83
b) \(\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{19\cdot21}\right)\cdot x=\frac{9}{7}\)
\(\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\right)\cdot x=\frac{9}{7}\)
\(\left(\frac{1}{3}-\frac{1}{21}\right)\cdot x=\frac{9}{7}\)
\(\frac{2}{7}\cdot x=\frac{9}{7}\)
\(x=\frac{9}{2}\)
2/3.5 + 2/5.7 + 2/7.9 + ... + 2/41.43
= 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + ... + 1/41 - 1/43
= 1/3 - 1/43
= 40/129
ỦNG HỘ NHA
( \(\frac{1}{1x3}\)+ \(\frac{1}{3x5}\)+....+\(\frac{1}{9x11}\)) x \(y\) = \(\frac{2}{3}\)
( \(\frac{2}{1x3}\)+ \(\frac{2}{3x5}\)+...+\(\frac{2}{9x11}\)) x \(y\) = \(\frac{4}{3}\) (nhân 2 vế lên với 2)
(1 - \(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{5}\)+\(\frac{1}{5}\)- ...+ \(\frac{1}{9}\)- \(\frac{1}{11}\)) x \(y\)= \(\frac{4}{3}\)
( 1 - \(\frac{1}{11}\)) x \(y\)=\(\frac{4}{3}\)
\(\frac{10}{11}\) x \(y\) =\(\frac{4}{3}\)
\(y\) = \(\frac{4}{3}\): \(\frac{10}{11}\)
\(y\) = \(\frac{4}{3}\)x \(\frac{11}{10}\)
\(y\) =\(\frac{22}{15}\)
Bài 1:
a; (\(\dfrac{1}{4}\)\(x\) - \(\dfrac{1}{8}\)) x \(\dfrac{3}{4}\) = \(\dfrac{1}{4}\)
\(\dfrac{1}{4}x\) - \(\dfrac{1}{8}\) = \(\dfrac{1}{4}\) : \(\dfrac{3}{4}\)
\(\dfrac{1}{4}\)\(x\) - \(\dfrac{1}{8}\) = \(\dfrac{1}{4}\) x \(\dfrac{4}{3}\)
\(\dfrac{1}{4}x\) - \(\dfrac{1}{8}\) = \(\dfrac{1}{3}\)
\(\dfrac{1}{4}x\) = \(\dfrac{1}{3}\) + \(\dfrac{1}{8}\)
\(\dfrac{1}{4}\) \(x\)= \(\dfrac{8}{24}\) + \(\dfrac{11}{24}\)
\(\dfrac{1}{4}x=\dfrac{11}{24}\)
\(x=\dfrac{11}{24}:\dfrac{1}{4}\)
\(x=\dfrac{11}{24}\times4\)
\(x=\dfrac{11}{6}\)
b; \(\dfrac{12}{5}:x\) = \(\dfrac{14}{3}\) x \(\dfrac{4}{7}\)
\(\dfrac{12}{5}\) : \(x\) = \(\dfrac{8}{3}\)
\(x\) = \(\dfrac{12}{5}\) : \(\dfrac{8}{3}\)
\(x\) = \(\dfrac{12}{5}\) x \(\dfrac{3}{8}\)
\(x\) = \(\dfrac{9}{10}\)
\(\frac{2}{3.5}+\frac{2}{5.7}+........+\frac{2}{37.39}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+......+\frac{1}{37}-\frac{1}{39}\)
\(=\frac{1}{3}-\frac{1}{39}\)
\(=\frac{13}{39}-\frac{1}{39}\)
\(=\frac{12}{39}=\frac{4}{13}\)
ta có A=1/3-1/5+1/5-1/7+1/7-1/9+....+1/37-1/39
=1/3-1/39
=12/39
Ta có:
1/1.3 + 1/3.5 + 1/5.7 + ... + 1/x.(x+2) = 1/2.(2/1.3 + 2/3.5 + 2/5.7 + ... + 2/x.(x+2)
= 1/2.(1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/x - 1/x+2
= 1/2.(1 - 1/x+2)
=> 1/2.(1 - 1/x+2) = 20/41
1 - 1/x+ 2 = 20/41 : 1/2
1 - 1/x+2 = 40/41
1/x+2 = 1/41
=>x + 2 = 41
=>x = 41 - 2
=>x = 39
Vậy x = 39
Ủng hộ nha
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x.\left(x+2\right)}=\frac{20}{41}\)
=> \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{x.\left(x+2\right)}=2.\frac{20}{41}\)
=> \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{40}{41}\)
=> \(1-\frac{1}{x+2}=\frac{40}{41}\)
=> \(\frac{1}{x+2}=1-\frac{40}{41}\)
=> \(\frac{1}{x+2}=\frac{1}{41}\)
=> \(x+2=41\)
=> \(x=41-2=39\)
Gọi tổng trên là A
1/2A= 2/1.3+1/3.5+...+1/x.(x+2)
1/2A= 1-1/x.(x+2)
A=\(\frac{1-\frac{1}{x.\left(x+2\right)}}{2}\)
Ta có: \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{x.\left(x+2\right)}=\frac{50}{101}\)
suy ra: \(\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{50}{101}\)
\(\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{x+2}\right)=\frac{50}{101}\)
\(\frac{1}{1}-\frac{1}{x+2}=\frac{50}{101}:\frac{1}{2}=\frac{100}{101}\)
\(\frac{1}{x+2}=1-\frac{100}{101}=\frac{1}{101}\)
suy ra: \(x+2=101\)
suy ra: \(101-2=99\)
Sửa đề: \(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+...+\dfrac{2}{x\left(x+2\right)}=\dfrac{32}{99}\)
=>\(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{x}-\dfrac{1}{x+2}=\dfrac{32}{99}\)
=>\(\dfrac{1}{3}-\dfrac{1}{x+2}=\dfrac{32}{99}\)
=>\(\dfrac{1}{x+2}=\dfrac{1}{3}-\dfrac{32}{99}=\dfrac{1}{99}\)
=>x+2=99
=>x=97