K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
8 tháng 11 2017

Lời giải:

Đặt \(2^{x^2}=a; 2^x=b\)

PT tương đương:

\(2.(2^{x^2})^2-9.2^{x^2}.2^x+4.(2^x)^2=0\)

\(\Leftrightarrow 2a^2-9ab+4b^2=0\)

\(\Leftrightarrow (a-4b)(2a-b)=0\)

TH1: \(a-4b=0\Leftrightarrow 2^{x^2}=4.2^x\Leftrightarrow 2^{x^2}=2^{x+2}\)

\(\Leftrightarrow x^2=x+2\Leftrightarrow x^2-x-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

TH2: \(2a-b=0\Leftrightarrow 2^{x^2+1}=2^x\Leftrightarrow x^2-x+1=0\)

\(\Leftrightarrow (x-\frac{1}{2})^2+\frac{3}{4}=0\) (vô lý)

Vậy \(x\in\left\{-1;2\right\}\)

23 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

23 tháng 2 2021

\(\int\dfrac{2x+1}{\left(x+1\right)^2+1}dx\)

\(x+1=\tan t\Rightarrow dx=\left(\tan^2t+1\right)dt\)

\(\Rightarrow\int\dfrac{2x+1}{\left(x+1\right)^2+1}dx=\int\dfrac{2\left(\tan t-1\right)+1}{\tan^2t+1}.\left(\tan^2t+1\right)dt\)

\(=\int(2\tan t-1)dt=\int2\tan t.dt-\int dt=2\int\tan t.dt-t\)

\(\int\tan t.dt=\int\dfrac{\sin t}{\cos t}.dt\)

\(u=\cos t\Rightarrow du=-\sin t.dt\Rightarrow\int\dfrac{\sin t}{\cos t}=-\int\dfrac{\sin t}{u}.\dfrac{du}{\sin t}=-ln \left|\cos t\right|+C\)

\(\Rightarrow\int\dfrac{2x+1}{x^2+2x+2}dx=-2ln\left|\cos t\right|-t=-2ln\left|\cos\left[arc\tan\left(x+1\right)\right]\right|-arc\tan\left(x+1\right)\)

P/s: Bạn tự thay cận vô nhé !

NV
23 tháng 2 2021

\(=\int\limits^1_0\dfrac{2x+2}{x^2+2x+2}dx-\int\limits^1_0\dfrac{1}{\left(x+1\right)^2+1}dx\)

\(=ln\left(x^2+2x+2\right)|^1_0-arctan\left(x+1\right)|^1_0=...\)

11 tháng 3 2018

a) Bất phương trình đã cho tương đương với hệ sau:

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy tập nghiệm là (−1;0) ∪ (7/2; + ∞ )

b) Tương tự câu a), tập nghiệm là (1/10; 5)

c) Đặt t = log 2 x , ta có bất phương trình 2 t 3  + 5 t 2  + t – 2 ≥ 0 hay (t + 2)(2 t 2  + t − 1) ≥ 0 có nghiệm −2 ≤ t ≤ −1 hoặc t ≥ 1/2

Suy ra 1/4 ≤ x ≤ 1/2 hoặc x ≥ 2

Vậy tập nghiệm của bất phương trình đã cho là: [1/4; 1/2] ∪ [ 2 ; + ∞ )

d) Bất phương trình đã cho tương đương với hệ:

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy tập nghiệm là (ln(2/3); 0] ∪ [ln2; + ∞ )

NV
9 tháng 6 2019

a/ ĐKXĐ: \(x>\frac{1}{2}\)

\(\Leftrightarrow\frac{3x^2-1}{\sqrt{2x-1}}-\sqrt{2x-1}=mx\)

\(\Leftrightarrow\frac{3x^2-2x}{\sqrt{2x-1}}=mx\Leftrightarrow\frac{3x-2}{\sqrt{2x-1}}=m\)

Đặt \(\sqrt{2x-1}=a>0\Rightarrow x=\frac{a^2+1}{2}\Rightarrow\frac{3a^2-1}{2a}=m\)

Xét hàm \(f\left(a\right)=\frac{3a^2-1}{2a}\) với \(a>0\)

\(f'\left(a\right)=\frac{12a^2-2\left(3a^2-1\right)}{4a^2}=\frac{6a^2+2}{4a^2}>0\)

\(\Rightarrow f\left(a\right)\) đồng biến

Mặt khác \(\lim\limits_{a\rightarrow0^+}\frac{3a^2-1}{2a}=-\infty\); \(\lim\limits_{a\rightarrow+\infty}\frac{3a^2-1}{2a}=+\infty\)

\(\Rightarrow\) Phương trình đã cho luôn có nghiệm với mọi m

NV
9 tháng 6 2019

b/ ĐKXĐ: \(x\ge2\)

\(\Leftrightarrow\sqrt[4]{\left(x-1\right)^2}+4m\sqrt[4]{\left(x-1\right)\left(x-2\right)}+\left(m+3\right)\sqrt[4]{\left(x-2\right)^2}=0\)

Nhận thấy \(x=2\) không phải là nghiệm, chia 2 vế cho \(\sqrt[4]{\left(x-2\right)^2}\) ta được:

\(\sqrt[4]{\left(\frac{x-1}{x-2}\right)^2}+4m\sqrt[4]{\frac{x-1}{x-2}}+m+3=0\)

Đặt \(\sqrt[4]{\frac{x-1}{x-2}}=a\) pt trở thành: \(a^2+4m.a+m+3=0\) (1)

Xét \(f\left(x\right)=\frac{x-1}{x-2}\) khi \(x>0\)

\(f'\left(x\right)=\frac{-1}{\left(x-2\right)^2}< 0\Rightarrow f\left(x\right)\) nghịch biến

\(\lim\limits_{x\rightarrow2^+}\frac{x-1}{x-2}=+\infty\) ; \(\lim\limits_{x\rightarrow+\infty}\frac{x-1}{x-2}=1\) \(\Rightarrow f\left(x\right)>1\Rightarrow a>1\)

\(\left(1\right)\Leftrightarrow m\left(4a+1\right)=-a^2-3\Leftrightarrow m=\frac{-a^2-3}{4a+1}\)

Xét \(f\left(a\right)=\frac{-a^2-3}{4a+1}\) với \(a>1\)

\(f'\left(a\right)=\frac{-2a\left(4a+1\right)-4\left(-a^2-3\right)}{\left(4a+1\right)^2}=\frac{-4a^2-2a+12}{\left(4a+1\right)^2}=0\Rightarrow a=\frac{3}{2}\)

\(f\left(1\right)=-\frac{4}{5};f\left(\frac{3}{2}\right)=-\frac{3}{4};\) \(\lim\limits_{a\rightarrow+\infty}\frac{-a^2-3}{4a+1}=-\infty\)

\(\Rightarrow f\left(a\right)\le-\frac{3}{4}\Rightarrow m\le-\frac{3}{4}\)

NV
18 tháng 3 2021

a.

Pt giao điểm: \(cosx=0\Rightarrow x=\dfrac{\pi}{2}\)

\(S=\int\limits^{\pi}_0\left|cosx\right|dx=\int\limits^{\dfrac{\pi}{2}}_0cosxdx-\int\limits^{\pi}_{\dfrac{\pi}{2}}cosxdx=2\)

b.

Bạn coi lại đề, \(y=\dfrac{1}{2}x,x+\dfrac{1}{2}\) nghĩa là sao nhỉ?

c.

Pt giao điểm với Ox:

\(2-x-x^2=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

\(S=\int\limits^1_{-2}\left(2-x-x^2\right)dx=\left(2x-\dfrac{1}{2}x^2-\dfrac{1}{3}x^3\right)|^1_{-2}=\dfrac{9}{2}\)

21 tháng 3 2021

  Vâng để xem lại đề bài