Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Câu 1:
\(5^{2x}=3^{2x}+2.5^x+2.3^x\)
\(\Leftrightarrow 5^{2x}-2.5^x+1=3^{2x}+2.3^x+1\)
\(\Leftrightarrow (5^x-1)^2=(3^x+1)^2\)
\(\Leftrightarrow (5^x-1-3^x-1)(5^x-1+3^x+1)=0\)
\(\Leftrightarrow (5^x-3^x-2)(5^x+3^x)=0\)
Vì \(3^x,5^x>0\Rightarrow 3^x+5^x>0\), do đó từ pt trên ta có \(5^x-3^x=2\)
\(\Leftrightarrow 5^x=3^x+2\)
TH1: \(x>1\)
\(\Rightarrow 5^x=3^x+2< 3^x+2^x\)
\(\Leftrightarrow 1< \left(\frac{3}{5}\right)^x+\left(\frac{2}{5}\right)^x\)
Vì bản thân \(\frac{2}{5},\frac{3}{5}<1\), và \(x>1\Rightarrow \left(\frac{2}{5}\right)^x< \frac{2}{5};\left(\frac{3}{5}\right)^x<\frac{3}{5}\)
\(\Rightarrow \left(\frac{2}{5}\right)^x+\left(\frac{3}{5}\right)^x< 1\) (vô lý)
TH2: \(x<1 \Rightarrow 5^x=3^x+2> 3^x+2^x\)
\(\Leftrightarrow 1>\left(\frac{3}{5}\right)^x+\left(\frac{2}{5}\right)^x\)
Vì \(\frac{2}{5};\frac{3}{5}<1; x<1\Rightarrow \left(\frac{3}{5}\right)^x> \frac{3}{5}; \left(\frac{2}{5}\right)^x>\frac{2}{5}\Rightarrow \left(\frac{2}{5}\right)^x+\left(\frac{3}{5}\right)^x>1\)
(vô lý)
Vậy \(x=1\)
Câu 2:
Ta có \(1+6.2^x+3.5^x=10^x\)
\(\Leftrightarrow \frac{1}{10^x}+6.\frac{1}{5^x}+3.\frac{1}{2^x}=1\)
\(\Leftrightarrow 10^{-x}+6.5^{-x}+3.2^{-x}=1\)
Ta thấy, đạo hàm vế trái là một giá trị âm, vế phải là hàm hằng có đạo hàm bằng 0, do đó pt có nghiệm duy nhất.
Thấy \(x=2\) thỏa mãn nên nghiệm duy nhất của pt là x=2
Câu 3:
\(6(\sqrt{5}+1)^x-2(\sqrt{5}-1)^x=2^{x+2}\)
Đặt \(\sqrt{5}+1=a\), khi đó sử dụng định lý Viete đảo ta duy ra a là nghiệm của phương trình \(a^2-2a-4=0\)
Mặt khác, từ pt ban đầu suy ra \(6.a^x-2\left(\frac{4}{a}\right)^x=2^{x+2}\)
\(\Leftrightarrow 6.a^{2x}-2^{x+2}a^x-2^{2x+1}=0\)
\(\Leftrightarrow 2(a^x-2^x)^2+4(a^{2x}-2^{2x})=0\)
\(\Leftrightarrow 2(a^x-2^x)^2+4(a^x-2^x)(a^x+2^x)=0\)
\(\Leftrightarrow (a^x-2^x)(6a^x+2^{x+1})=0\)
Dễ thấy \(6a^x+2^{x+1}>0\forall x\in\mathbb{R}\Rightarrow a^x-2^x=0\)
\(\Leftrightarrow (\sqrt{5}+1)^x=2^x\Leftrightarrow x=0\)
1.a/ \(\left\{{}\begin{matrix}3^{x+1}>0\\5^{x^2}>0\end{matrix}\right.\) \(\forall x\) \(\Rightarrow\) pt vô nghiệm
b/ Mình làm câu b, câu c bạn tự làm tương tự, 3 câu này cùng dạng
Lấy ln hai vế:
\(ln\left(3^{x^2-2}.4^{\dfrac{2x-3}{x}}\right)=ln18\Leftrightarrow ln3^{x^2-2}+ln4^{\dfrac{2x-3}{x}}-ln18=0\)
\(\Leftrightarrow\left(x^2-2\right)ln3+\dfrac{2x-3}{x}2ln2-ln\left(2.3^2\right)=0\)
\(\Leftrightarrow x^3ln3-2x.ln3+4x.ln2-6ln2-x.ln2-2x.ln3=0\)
\(\Leftrightarrow x^3ln3-4x.ln3+3x.ln2-6ln2=0\)
\(\Leftrightarrow x.ln3\left(x^2-4\right)+3ln2\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2ln3+2x.ln3+3ln2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\Rightarrow x=2\\x^2ln3+2x.ln3+3ln2=0\left(1\right)\end{matrix}\right.\)
Xét (1): \(\left(x^2+2x\right)ln3=-3ln2\Leftrightarrow x^2+2x=\dfrac{-3ln2}{ln3}=-3log_32\)
\(\Leftrightarrow\left(x+1\right)^2=1-3log_32=log_33-log_38=log_3\dfrac{3}{8}< 0\)
\(\Rightarrow\left(1\right)\) vô nghiệm
\(\Rightarrow\) pt có nghiệm duy nhất \(x=2\)
2/ Pt đã cho tương đương:
\(2017^{sin^2x}-2017^{cos^2x}=cos^2x-sin^2x\)
\(\Leftrightarrow2017^{sin^2x}+sin^2x=2017^{cos^2x}+cos^2x\)
Xét hàm \(f\left(t\right)=2017^t+t\) (\(0\le t\le1\))
\(\Rightarrow f'\left(t\right)=2017^t.ln2017+1>0\) \(\forall t\) \(\Rightarrow f\left(t\right)\) đồng biến
\(\Rightarrow f\left(t_1\right)=f\left(t_2\right)\Leftrightarrow t_1=t_2\)
\(\Rightarrow sin^2x=cos^2x\Rightarrow cos^2x-sin^2x=0\Rightarrow cos2x=0\)
\(\Rightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
Thế k=0; k=1 ta được 2 nghiệm thuộc đoạn đã cho là \(x=\dfrac{\pi}{4};x=\dfrac{3\pi}{4}\)
\(\Rightarrow\) tổng nghiệm là \(T=\dfrac{\pi}{4}+\dfrac{3\pi}{4}=\pi\)
a/ \(y'=18x-42x^5+7x^4=0\)
\(\Leftrightarrow x\left(42x^4-7x^3-18\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\42x^4-7x^3-18=0\end{matrix}\right.\)
Nói chung là ko giải được pt dưới nên nhường thầy giáo ra đề tự xử
b/ \(y'=\frac{4}{\left(x+2\right)^2}>0\) \(\forall x\ne-2\)
\(\Rightarrow\) Hàm số đồng biến trên \(\left(-\infty;-2\right)\) và \(\left(-2;+\infty\right)\)
c/ \(y'=\frac{\left(4x+3\right)\left(2x+1\right)-2\left(2x^2+3x\right)}{\left(2x+1\right)^2}=\frac{4x^2+4x+3}{\left(2x+1\right)^2}=\frac{\left(2x+1\right)^2+2}{\left(2x+1\right)^2}>0\) \(\forall x\ne-\frac{1}{2}\)
\(\Rightarrow\) Hàm số đồng biến trên \(\left(-\infty;-\frac{1}{2}\right)\) và \(\left(-\frac{1}{2};+\infty\right)\)
d/ \(y'=\frac{x^2-2x-\left(2x-2\right)\left(x-1\right)}{\left(x^2-2x\right)^2}=\frac{-x^2+2x-2}{\left(x^2-2x\right)^2}=\frac{-\left(x-1\right)^2-1}{\left(x^2-2x\right)^2}< 0\) \(\forall x\ne\left\{0;2\right\}\)
\(\Rightarrow\) Hàm số nghịch biến trên \(\left(-\infty;0\right)\) và \(\left(0;2\right)\) và \(\left(2;+\infty\right)\)
e/ \(y'=\frac{\left(2x-x^2\right)'}{2\sqrt{2x-x^2}}=\frac{1-x}{\sqrt{2x-x^2}}=0\Rightarrow x=1\)
\(y'>0\) khi \(0< x< 1\); \(y'< 0\) khi \(1< x< 2\)
\(\Rightarrow\) Hàm số đồng biến trên \(\left(0;1\right)\) và nghịch biến trên \(\left(1;2\right)\)
a) \(2^{x+4}+2^{x+2}=5^{x+1}+3\cdot5^x\)
\(\Rightarrow2^x+2^4+2x^x+2^2=5^x\cdot x+3\cdot5^x\)
\(\Leftrightarrow2^x+16+2^x\cdot4=5\cdot5^x+3\cdot5^x\)
\(\Leftrightarrow16\cdot2^x+4\cdot2^x=8\cdot5^x\)
\(\Leftrightarrow20\cdot2^x=8\cdot5^x\)
\(\Leftrightarrow20\cdot\left(\dfrac{2}{5}\right)^x=8\)
\(\Leftrightarrow\left(\dfrac{2}{5}\right)^x=\dfrac{2}{5}\)
\(\Leftrightarrow\left(\dfrac{2}{5}\right)^x=\left(\dfrac{2}{5}\right)^1\)
\(\Rightarrow x=1\)
\(TXD:D=R\)
\(\Leftrightarrow\frac{4^x}{2}+\frac{4^x}{3}-\frac{4^x}{5}>\frac{2^7}{2^x}+\frac{2^5}{2^x}-\frac{2^3}{2^x}\)
\(\Leftrightarrow4^x.\frac{19}{30}>\frac{1}{2^x}.152\\ \Leftrightarrow8^x>240\Leftrightarrow x>\log_8240\)