Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo ở đây: https://olm.vn/hoi-dap/detail/1284076363999.html
ΔABCΔABC có ˆA+ˆB+ˆC=180oA^+B^+C^=180o
Theo để bài ˆA3=ˆB4=ˆC5A^3=B^4=C^5
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
ˆA3=ˆB4=ˆC5=ˆA+ˆB+ˆC3+4+5=180o12=15oA^3=B^4=C^5=A^+B^+C^3+4+5=180o12=15o
hay: ˆA3=15o⇒ˆA=15o.3=45oA^3=15o⇒A^=15o.3=45o
ˆB4=15o⇒ˆB=15o.4=60oB^4=15o⇒B^=15o.4=60o
ˆC5=15o⇒ˆC=15o.5=75o
Gọi số đo 3 góc của \(\Delta ABC\)lần lượt là a; b; c (a; b; c \(\inℤ\)/ a+b+c=1800 )
Vì a; b; c lần lượt tỉ lệ với 3; 4; 5 nên:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
Áp dụng t/c DTSBN, ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)\(=\frac{a+b+c}{3+4+5}\)\(=\frac{180}{12}=15\)
=> a=15.3=45
b=15.4=60
c= 15.5=75
Đ/s: ...
Ta có: góc A, góc B, góc C lần lượt tỉ lệ vs 1;2;3
=> \(\frac{A}{1}=\frac{B}{2}=\frac{C}{3}\)Và góc A + góc B + góc C= 180 độ(định lí tổng 3 góc trog 1 tam giác)
Áp dụng t/c của dãy tỉ số= nhau ta có:
\(\frac{A}{1}=\frac{B}{2}=\frac{C}{3}=\frac{A+B+C}{1+2+3}=\frac{180^o}{6}=30^o\)
Khi đó : \(\frac{A}{1}=30^o\Rightarrow A=30\)
Làm tương tự vs góc B và góc C
Ta có A,B,C tỉ lệ với 1,2,3
==>A/1=B/2=C/3
==> A+B+C/1+2+3=180ĐỘ/6=30 ĐỘ
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{180}{12}=15\)
Do đó: a=45; b=60; c=75
Ta có :
\(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}\)và a + b + c = 180 o
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}=\frac{a+b+c}{1+2+3}=\frac{180^0}{6}=30^0\)
=> a = 30 o
b = 60 o
c = 90 o
Vậy a = 30 o , b = 60 o , c = 90 o
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
`a,` Gọi số đo `3` góc của Tam giác `ABC` lần lượt là `x,y,z (x,y,z \ne 0)`
Tỉ lệ thức biểu diễn mối quan hệ giữa số đo `3` góc trong Tam giác `ABC` là `x/2=y/3=z/4`
`b,` Tổng số đo `3` góc trong `1` tam giác là `180^0`
`-> x+y+z=180`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/2=y/3=z/4=(x+y+z)/(2+3+4)=180/9=20`
`-> x/2=y/3=z/4=20`
`->x=20*2=40, y=20*3=60, z=20*4=80`
Vậy, số đo của `3` góc trong Tam giác `ABC` lần lượt là `40^0, 60^0, 80^0.`
a:
Đặt \(a=\widehat{A};b=\widehat{B};c=\widehat{C}\)
a/2=b/3=c/4
b: a/2=b/3=c/4=(a+b+c)/(2+3+4)=180/9=20
=>a=40; b=60; c=80
a) Gọi a, b, c lần lượt là số đo của ∠A, ∠B, ∠C (a, b, c > 0)
Do số đo các góc: ∠A, ∠B, ∠C lần lượt tỉ lệ với 2; 4; 6 nên:
a/2 = b/4 = c/6
Do tổng số đo các góc của tam giác ABC là 180⁰ nên:
a + b + c = 180⁰
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
a/2 = b/4 = c/6 = (a + b + c)/(2 + 4 + 6) = 180/12 = 15
a/2 = 15 ⇒ a = 15.2 = 30
b/4 = 15 ⇒ b = 15.4 = 60
c/6 = 15 ⇒ c = 15.6 = 90
Vậy số đo các góc: ∠A, ∠B, ∠C lần lượt là 30⁰; 60⁰; 90⁰
b) Do ∠A = 30⁰; ∠B = 60⁰; ∠C = 90⁰
⇒ ∠A < ∠B < ∠C
⇒ BC < AC < AB (quan hệ giữa góc và cạnh đối diện trong tam giác)
a) Gọi a, b, c lần lượt là số đo của ba góc �, �, �,(�, �, �∈�∗A, B, C,(a, b, c∈N∗ đơn vị:∘)∘). Vì số đo các góc �,�,�A,B,C lần lượt tỉ lệ với các số 2;4;62;4;6. nên:
�2=�4=�62a=4b=6c và �+�+�=180∘a+b+c=180∘
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
�2=�4=�6=�+�+�2+4+6=18012=15∘2a=4b=6c=2+4+6a+b+c=12180=15∘
Suy ra:
�2=15∘⇒�=30∘;�4=15∘⇒�=60∘;�6=15∘⇒�=90∘2a=15∘⇒a=30∘;4b=15∘⇒b=60∘;6c=15∘⇒c=90∘ (thỏa mãn)
Vậy số đo của ba góc �,�,�A,B,C lần lượt là 30∘;60∘;90∘30∘;60∘;90∘.
b) Vì �^<�^<�^A<B<C nên ��<��<��BC<AC<AB.