Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{2}+\frac{x}{2.3}+\frac{x}{3.4}+.....+\frac{x}{2015.2016}=\frac{2015}{4032}\)
\(x.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2015.2016}\right)=\frac{2015}{4032}\)
\(x.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2015}-\frac{1}{2016}\right)=\frac{2015}{4032}\)
\(x.\left(1-\frac{1}{2016}\right)=\frac{2015}{4032}\)
\(x.\frac{2015}{2016}=\frac{2014}{4032}\)
\(x=\frac{2015}{4032}:\frac{2015}{2016}\)
\(x=\frac{1}{2}\)
\(=\frac{x}{1}-\frac{x}{2}+\frac{x}{2}-\frac{x}{3}+...+\frac{x}{2015}-\frac{x}{2016}=\frac{2015}{4023}\)
\(=\frac{x}{1}-\frac{x}{2016}=\frac{2015}{4023}\)
\(=\frac{2015}{2016}x=\frac{2015}{4023}\)
=> x = \(\frac{2015}{4023}\cdot\frac{2016}{2015}\)= 2016/4023
\(\left(\frac{x+4}{2012}+1\right)+\left(\frac{x+3}{2013}+1\right)=\left(\frac{x+2}{2014}+1\right)+\left(\frac{x+1}{2015}+1\right)\)
\(\frac{x+2016}{2012}+\frac{x+2016}{2013}=\frac{x+2016}{2014}+\frac{x+2016}{2015}\)
\(\frac{x+2016}{2012}+\frac{x+2016}{2013}-\frac{x+2016}{2014}-\frac{x+2016}{2015}=0\)
\(\left(x+2016\right)\left(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}\right)=0\)
mà (1/2012+1/2013-1/2014-1/2015)#0 nên x+2016=0
x=0-2016
x=-2016
\(\dfrac{2}{2\cdot3}+\dfrac{2}{3\cdot4}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2013}{2015}\)
=>\(\dfrac{2}{2}-\dfrac{2}{3}+\dfrac{2}{3}-\dfrac{2}{4}+...+\dfrac{2}{x}-\dfrac{2}{x+1}=\dfrac{2013}{2015}\)
=>\(1-\dfrac{2}{x+1}=\dfrac{2013}{2015}\)
=>\(\dfrac{2}{x+1}=\dfrac{2}{2015}\)
=>x+1=2015
=>x=2014