K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4

Đặt A= 2 + 2+ 2+ 2+ ... + 250.Ta có:

A= 2 + 2+ 2+ 2+ ... + 250

2A= 2+ 2+ 2+ 25  + ... + 251

2A - A = (2+ 2+ 2+ 25  + ... + 251) - (2 + 2+ 2+ 2+ ... + 250)

A = 251 - 2

Vậy A = 251 - 2

Chúc bạn học tốt!

 

 

18 tháng 4

 A= 2 + 2+ 2+ 2+ ... + 250.Ta có:

A= 2 + 2+ 2+ 2+ ... + 250

2A= 2+ 2+ 2+ 25  + ... + 251

2A - A = (2+ 2+ 2+ 25  + ... + 251) - (2 + 2+ 2+ 2+ ... + 250)

A = 251 - 2

Bài 2:

a: \(A=2+2^2+2^3+...+2^{50}\)

\(\Leftrightarrow2A=2^2+2^3+2^4+...+2^{51}\)

=>\(A=2^{51}-2\)

b: \(B=3+3^2+3^3+...+3^{50}\)

\(\Leftrightarrow3B=3^2+3^3+...+3^{51}\)

\(\Leftrightarrow2B=3^{51}-3\)

hay \(B=\dfrac{3^{51}-3}{2}\)

c: \(C=2^2+2^4+...+2^{50}\)

\(\Leftrightarrow4C=2^4+2^6+...+2^{52}\)

\(\Leftrightarrow3C=2^{52}-4\)

hay \(C=\dfrac{2^{52}-4}{3}\)

\(E=-\dfrac{1}{3}\cdot\left(1+2+3\right)-\dfrac{1}{4}\left(1+2+3+4\right)-...-\dfrac{1}{50}\left(1+2+3+...+50\right)\)

\(=\dfrac{-1}{3}\cdot\dfrac{3\cdot4}{2}-\dfrac{1}{4}\cdot\dfrac{4\cdot5}{2}-...-\dfrac{1}{50}\cdot\dfrac{50\cdot51}{2}\)

\(=\dfrac{-4}{2}-\dfrac{5}{2}-...-\dfrac{51}{2}\)

\(=\dfrac{-\left(4+5+...+51\right)}{2}\)

\(=\dfrac{-\left(51+4\right)\cdot\dfrac{48}{2}}{2}=-\dfrac{1320}{2}=-660\)

7 tháng 10 2019

\(=\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)\left(1-\frac{1}{5^2}\right)...\left(1-\frac{1}{50^2}\right)\)

\(=\frac{8}{3\cdot3}\cdot\frac{15}{4\cdot4}\cdot\frac{24}{5\cdot5}\cdot....\cdot\frac{2499}{50\cdot50}\)

\(=\frac{\left(2\cdot4\right)\left(3\cdot5\right)\left(4\cdot6\right)...\left(49\cdot51\right)}{\left(3\cdot3\right)\left(4\cdot4\right)\left(5\cdot5\right)...\left(50\cdot50\right)}\)

\(=\frac{\left(2\cdot3\cdot4\cdot...\cdot49\right)\left(4\cdot5\cdot6\cdot...\cdot51\right)}{\left(3\cdot4\cdot5\cdot...\cdot50\right)\left(3\cdot4\cdot5\cdot...\cdot50\right)}\)

\(=\frac{2\cdot51}{50\cdot3}\)

27 tháng 11 2017

1/ S=1.2+2.3+3.4+...+50.51

=> 3S=1.2.3+2.3.3+3.4.3+...+50.51.3

=> 3S=1.2.3+2.3.(4-1)+3.4.(5-2)+...+50.51(52-49)

=> 3S=(1.2.3+2.3.4+3.4.5+...+50.51.52)-(1.2.3+2.3.4+...+49.50.51)

=> 3S=50.51.52 => S=50.51.52:3=44200

Đáp số: 44200

2/ A=12+22+32+42+...+502 = 1(2-1)+2(3-1)+3(4-1)+...+50(51-1)

=> A=(1.2+2.3+3.4+...+50.51)-(1+2+3+...+50)

=> A=S-\(\frac{50\left(50+1\right)}{2}\)=44200-1275

A=42925

Đáp số: 42925