Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{2005.2007-1}{2004+2005.2006}=\frac{\left(2014+1\right).2007-1}{2004+2005.2006}=\frac{2004+2005.2007-1}{2004+2005-2006}=\frac{2004+2005.2006}{2004+2005.2006}=1\)
\(\frac{2003}{2004}+\frac{2004}{2005}+\frac{2005}{2003}=1-\frac{1}{2004}+1-\frac{1}{2005}+1+\frac{2}{2003}\)
\(=3+\left(\frac{1}{2003}-\frac{1}{2004}\right)+\left(\frac{1}{2003}-\frac{1}{2005}\right)\)
Do \(\frac{1}{2003}>\frac{1}{2004}>\frac{1}{2005}.\) nên \(\left(\frac{1}{2003}-\frac{1}{2004}\right)+\left(\frac{1}{2003}-\frac{1}{2005}\right)>0\)
Vì vậy \(3+\left(\frac{1}{2003}-\frac{1}{2004}\right)+\left(\frac{1}{2003}-\frac{1}{2005}\right)>3\) (đpcm)
\(A=\frac{2003}{2004}+\frac{2004}{2005}+\frac{2005}{2003}\)
\(=(1-\frac{1}{2004})+(1-\frac{1}{2005})+(1+\frac{2}{2003})\)
\(=3+(\frac{1}{2003}+\frac{1}{2003}-\frac{1}{2004}-\frac{1}{2005})\)
Do\(\frac{1}{2003}\)>\(\frac{1}{2004}\)>\(\frac{1}{2005}\)
\(\Rightarrow\frac{1}{2003}+\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}\)>\(0\)
\(\Rightarrow3+(\frac{1}{2003}-\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2005})\)>\(3\)
\(\Rightarrow A\)>\(3\)
2003/2004 + 2004/2005 + 2005/2003
= 1 - 1/2004 + 1 - 1/2005 + 1 + 1/2003 + 1/2003
=(1+1+1)-(1/2004 - 1/2003 + 1/2005 - 1/2003)
= 3 - (1/2004 - 1/2003 + 1/2005 - 1/2003)
Vì 1/2004 < 1/2003 ; 1/2005 < 1/2003
=>1/2004 - 1/2003 + 1/2005 - 1/2003 < 0
=> 3 - (...) > 3
Vậy. ...
K mình nha
a) 2005*2007-1 b)2003*2004+2005*10+1994
2004+2005*2006 2005*2004-2003*2004
c) ( 5+3/8+18+1/2-7-5/24 )
c) 5 + \(\frac{3}{8}\)+18 + \(\frac{1}{2}\) - 7 - \(\frac{5}{24}\)
=\(\frac{43}{8}\)+ \(\frac{35}{2}\) +\(\frac{163}{24}\)
=\(\frac{129}{24}\)+ \(\frac{420}{24}\)+\(\frac{163}{24}\)
= \(\frac{58}{51}\)
k nhé
={2003 x 2004 x 2005} x {2005 - 2005}
={2003 x 2004 x 2005} x 0
=0
Ta có:\(\frac{2003.2004-2001}{2002.2003+2005}=\frac{\left(2002+1\right).2004-2001}{2002.\left(2004-1\right)+2005}\)
=\(\frac{2002.2004+2004-2001}{2002.2004-2002+2005}\)
=\(\frac{2002.2004+3}{2002.2004+2005-2002}\)
=\(\frac{2002.2004+3}{2002.2004+3}\)=1
Vay\(\frac{2003.2004-2001}{2002.2003+2005}=1\)