Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2 - x = 1/5 : 1/4
2 - x = 1/5 * 4
2 - x = 4/5
x = 2 - 4/5
x = 6/5
3 - x = 1/3 : 1/6
3 - x = 1/3 * 6
3 - x = 2
x = 3 - 2
x = 1
b) 1/3 * 1/2 + 1/5 * 1/2
= 1/2 * (1/3 + 1/5)
= 1/2 * 8/15
= 4/15
373737/414141 : 4545/4141
= 37/41 : 45/41
= 37/41 * 41/45
= 37/45
2727/4242 + 13/42 + 444444/424242
= 9/14 + 13/42 + 22/21
= 2
Bài giải
\(\frac{2}{3}+\frac{3}{4}+\frac{4}{5}=\frac{40}{60}+\frac{45}{60}+\frac{48}{60}=\frac{133}{60}\)
\(\frac{8}{5}+\frac{7}{6}+\frac{10}{9}+\frac{1}{2}=\frac{144}{90}+\frac{105}{90}+\frac{100}{90}+\frac{45}{90}=\frac{394}{90}\)
\(\frac{15}{17}-\frac{11}{13}+\frac{3}{26}=\frac{390}{442}+\frac{374}{442}+\frac{51}{442}=\frac{815}{442}\)
\(\frac{9}{12}\text{ x }\frac{4}{3}\text{ : }\frac{8}{5}=\frac{9}{12}\text{ x }\frac{4}{3}\text{ x }\frac{5}{8}=\frac{9\text{ x }4\text{ x }5}{12\text{ x }3\text{ x }8}=\frac{5}{8}\)
\(\frac{4}{5}\text{ x }\frac{15}{8}\text{ : }\frac{5}{7}=\frac{4}{5}\text{ x }\frac{15}{8}\text{ x }\frac{7}{5}=\frac{4\text{ x }15\text{ x }7}{5\text{ x }8\text{ x }5}=\frac{21}{10}\)
\(\frac{2}{3}+\frac{3}{4}+\frac{4}{5}=\frac{40}{60}+\frac{45}{60}+\frac{48}{60}=\frac{133}{60}\)
\(\frac{8}{5}+\frac{7}{6}+\frac{10}{9}+\frac{1}{2}=\frac{144}{90}+\frac{105}{90}+\frac{100}{90}+\frac{45}{90}=\frac{197}{45}\)
\(\frac{15}{17}-\frac{11}{13}+\frac{1}{26}=\frac{390}{442}+\frac{374}{442}+\frac{51}{442}=\frac{815}{442}\)
\(\frac{9}{12}\times\frac{4}{3}:\frac{8}{5}=1:\frac{8}{5}=\frac{5}{8}\)
\(\frac{4}{5}\times\frac{15}{8}:\frac{5}{7}=\frac{3}{2}:\frac{5}{7}=\frac{21}{10}\)
A. \(\left(x+1\right)+\left(x+2\right)+......+\left(x+100\right)=5750\)
\(x+1+x+2+....+x+100=5750\)
\(100x+\left(1+2+3+.......+100\right)=5750\)
\(100x+5050=5750\)
\(100x=700\)
\(x=700:100=7\)
B. x+(1+2+......+100) = 2000
x + 5050 = 2000
x = 2000 - 5050
x= -3050
C. ( x-1 )+(x-2)+......+( x - 100 ) = 50
x-1+x-2+.........+x-100 = 50
100x + ( -1-2-........-100 ) = 50
100x + ( - 5050 ) = 50
100x = 50 + 5050
100 x = 5100
x = 5100 : 100
x = 51
A . \(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+100\right)=5750\)
\(\left(x+x+x+...+x\right)+\left(1+2+3+...+100\right)=5750\)
\(100x+5050=5750\)
\(100x=5750-5050\)
\(100x=700\)
\(\Rightarrow x=\frac{700}{100}=7\)
B. \(x+\left(1+2+3+4+5+....+100\right)=2000\)
\(x+\frac{\left(100+1\right).100}{2}=2000\)
\(x+5050=2000\)
\(\Rightarrow x=2000-5050=-3050\)
C. \(\left(x-1\right)+\left(x-2\right)+\left(x-3\right)+....+\left(x-100\right)=50\)
\(\left(x+x+x+...+x\right)-\left(1+2+3+...+100\right)=50\)
\(100x-5050=50\)
\(100x=5100\)
\(\Rightarrow x=\frac{5100}{100}=51\)
X đầu tiên : 32 phần 32
X thứ hai : 36 phần 120
X thứ ba : 18 phần 21
X - ( 1/4 + 1/8 ) = 5/8
X - 3/8 = 5/8
X = 5/8 + 3/8
X = 1
\(\frac{1}{a}\times\left(a+1\right)...\frac{1}{a}-\frac{1}{a}+1\)
ta có vế trái: \(\frac{1}{a}\times \left(a+1\right)=\frac{1}{a}\times a+\frac{1}{a}\times1=\frac{a}{a}+\frac{1}{a}=1+\frac{1}{a}\)
vế phải: \(\frac{1}{a}-\frac{1}{a}+1=\left(\frac{1}{a}-\frac{1}{a}\right)+1=0+1=1\)
Vì: \(1+\frac{1}{a}>1\)nên \(\frac{1}{a}\times\left(a+1\right)>\frac{1}{a}-\frac{1}{a}+1\)
Vậy \(\frac{1}{a}\times\left(a+1\right)>\frac{1}{a}-\frac{1}{a}+1\)
2 - x = \(\frac{1}{5}\): \(\frac{1}{4}\)
2 -x = \(\frac{4}{5}\)
x = 2 - \(\frac{4}{5}\)
x = \(\frac{6}{5}\)
3 - x \(\times\) \(\frac{1}{3}\)= \(\frac{1}{6}\) \(\Rightarrow\) 3 - x = \(\frac{1}{6}\) \(\div\frac{1}{3}\)
3 - x = \(\frac{1}{2}\) \(\Rightarrow\) x = 3 - \(\frac{1}{2}\) \(\Rightarrow\) x = \(\frac{5}{2}\)