K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2020

Bạn tự vẽ hình nhá

Bài 2: 

Có C=40 độ => B = 50 độ do tam giác ABC vuông tại A thì BAC=90 độ

Có AH vuông góc BC => AHB=90 độ

=> BAH=40 độ (DO AHB=90 độ; B=50 độ)

DO BAC=90 độ (Cmt)

=> HAC=90-40=50 độ

Vậy B=50 độ; HAB=40 độ; HAC=50 độ.

10 tháng 8 2020

BẠN TỰ VẼ HÌNH NHÉ

Bài 3:

Có BDC là góc ngoài của tam giác CDE

=> góc BDC = góc CED + góc DCE

Ta lại có góc BEC cũng là góc ngoài của tam giác ABE

=> góc BEC = góc BAE + góc ABE

=> góc BEC > góc BAE

Mà góc BEC = góc DEC; góc BAE = góc BAC

=> góc DEC > góc BAC (*)

Mà góc BDC = góc CED + góc DCE

=> góc BDC > góc DCE (**) 

Từ (*) và (**) => góc BDC > góc BAC. 

Vậy góc BDC > góc BAC.

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cma) Chứng tỏ tam giác ABC vuông tại A.b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.a) Chứng tỏ tam giác ABC vuông.b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC =...
Đọc tiếp

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cm

a) Chứng tỏ tam giác ABC vuông tại A.

b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.

2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.

a) Chứng tỏ tam giác ABC vuông.

b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.

3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC = 20cm, AH = 12cm, BH = 5cm.

4.Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC

a) Chứng minh tam giác AHB = tam giác AHC

b) Từ H kẻ HM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho BM = CN. Chứng minh HN vuông góc AC.

5.Cho tam giác ABC cân tại A, tia phân giác của góc A cắt BC tại I

a) Chứng minh tam giác AIB = tam giác AIC

b) Lấy M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Chứng minh AD song song BC và AI vuông góc AD.

c) Vẽ AH vuông góc BD tại H, vẽ CK vuông góc BD tại K. Chứng minh BH = DK.

6.Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD(E thuộc BD). AE cắt BC ở K.

a) Chứng minh tam giác ABE = tam giác KBE và suy ra tam giác BAK cân.

b) Chứng minh tam giác ABD = tam giác KBD và DK vuông góc BC.

c) Kẻ AH vuông góc BC(H thuộc BC). Chứng minh AK là tia phân giác của HAC.

Mọi người vẽ hình lun 6 bài giúp mình nha! Mình đang cần gấp!:(

5
7 tháng 4 2020

Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)

8 tháng 4 2020

Do tam giác ABC có

AB = 3 , AC = 4 , BC = 5

Suy ra ta được

(3*3)+(4*4)=5*5  ( định lý pi ta go) 

9 + 16 = 25

Theo định lý py ta go thì tam giác abc vuông tại A

24 tháng 8 2021

Mọi người giúp mình trong hôm nay vứiiii ;-;

24 tháng 8 2021

hình e tự vẽ nhé

 a) Xét tam giác BHA vuông tại H có

góc B + góc HAB = 90 độ  ( hai góc phụ nhau)

40 độ  + góc HAB = 90 độ

=> góc HAB = 50 độ 

mà góc HAB + góc HAC =  90 độ ( tam giác ABC có góc A = 90 độ)

Ta lại có góc HAC + Góc C = 90 độ ( hai góc phụ nhau )

=>  góc HAB = góc C = 50 độ

 

a: Ta có: ΔABC vuông tại A

nên \(\widehat{B}+\widehat{C}=90^0\)

\(\Leftrightarrow\widehat{C}=90^0-40^0=50^0\)

7 tháng 7 2015

B2 : Hình dễ bạn tử kẻ hình nhá !

a)Ta có AH là đường cao

=> Góc AHB = AHC = 90o

 Xết tam giác AHB có :

BAH + AHB + HBA = 180o ( tổng 3 góc trong 1 tam giác )

=> BAH + 90+ 70=180o

=> BAH = 180o-70o-90o

=> BAH = 20o

Xét tam giác AHC cps  :

AHC + HAC + HCA = 180o

=> 90 + HAC + 30 = 180

=> HAC = 180-30-90=60o

b) Ta có AD  là đường phân giác 

=> ABD= CAD = 80/2 = 40o

Xét tam giác ADB có :

ABD + BDA +DAB = 180

=> 70 + BDA + 40 = 180

=> BDA = 180-40-70 = 70

Xét tam giác ADC có : 

ACD + CDA + DAC = 180

=> 30 + CDA + 40 = 180

=> CDA = 180-40-30

=> CDA=110

( **** )

7 tháng 7 2015

từng bài một thôi như này thì ngứa mắt lắm anh em ơi

27 tháng 4 2020

 Không bn nào giúp mình r :(((

28 tháng 3 2020

a, Vì △ABC cân tại A => AB = AC

Xét △ABD vuông tại D và △ACE vuông tại E

Có: BAC là góc chung

       AB = AC (cmt)

=> △ABD = △ACE (ch-gn)

c, Ta có: AE + BE = AB và AD + DC = AC

Mà AB = AC (cmt) ; AD = AE (△ABD = △ACE) 

=> BE = DC

Xét △HEB vuông tại E và △HDC vuông tại D

Có: BE = DC (cmt)

       EBH = DCH (△ABD = △ACE)

=> △HEB = △HDC (cgv-gnk)

=> BH = HC (2 cạnh tương ứng)

=> △BHC cân tại H

c, Vì AE = AD (cmt) => △AED cân tại A => AED = (180o - EAD) : 2 

Vì △ABC cân tại A (gt) => ABC = (180o - BAC) : 2

=> AED = ABC 

Mà 2 góc này nằm ở vị trí đồng vị

=> DE // BC (dhnb)

d, Xét △BAH và △CAH

Có: AB = AC (cmt)

    ABH = ACH (cmt)

    AH là cạnh chung

=> △BAH = △CAH (c.g.c)

=> BAH = CAH (2 góc tương ứng)

Xét △ABK và △ACK

Có: AB = AC (cmt)

    BAK = CAK (cmt)

   AK là cạnh chung

=> △ABK = △ACK (c.g.c)

=> BK = CK (2 cạnh tương ứng)

Xét △BHK và CMK

Có: HK = MK (gt)

     HKB = MKC (2 góc đối đỉnh)

        BK = CK (cmt)

=> △BHK = △CMK (c.g.c)

=> HBK = MCK (2 góc tương ứng)

Mà 2 góc này nằm ở vị trí so le trong 

=> BH // MC (dhnb)

=> BD // MC (H \in  BD)

Mà BD ⊥ AC (gt)

=> MC ⊥ AC (từ vuông góc song song)

=> ACM = 90o

=> △ACM vuông tại C

28 tháng 3 2020

1 cách khác cho câu d

d, làm giống đoạn đầu cho đến HBK = MCK (2 góc tương ứng) => DBC = BCM

Xét △BDC vuông tại D có: DBC + DCB = 90o (tổng 2 góc nhọn trong tam giác vuông)

=> BCM + ACB = 90o  => ACM = 90o => △ACM vuông tại C

BÀI 1 cho tam giác ABC vuông tại A.Kẻ BD là phân giác của góc B.Kẻ AI vuông góc BD tại I.AI cắt BC tại Ea) chứng minh AB=EBb) chứng minh tam giác BED vuôngc) DE cắt AB tại F, chứng minh AE//FCBÀI 2 cho tam giác ABC cân tại A, có BD và CE là hai đường trung tuyến cắt nhau tại Ia) chứng minh tam giác IBC cânb)lấy O thuộc tia IC sao cho IO=IE.Gọi K là trung điểm của IA.Chứng minh AO, BD, CK đồng quyBÀI 3 cho tam giác ABC...
Đọc tiếp

BÀI 1 cho tam giác ABC vuông tại A.Kẻ BD là phân giác của góc B.Kẻ AI vuông góc BD tại I.AI cắt BC tại E

a) chứng minh AB=EB

b) chứng minh tam giác BED vuông

c) DE cắt AB tại F, chứng minh AE//FC

BÀI 2 cho tam giác ABC cân tại A, có BD và CE là hai đường trung tuyến cắt nhau tại I

a) chứng minh tam giác IBC cân

b)lấy O thuộc tia IC sao cho IO=IE.Gọi K là trung điểm của IA.Chứng minh AO, BD, CK đồng quy

BÀI 3 cho tam giác ABC cân tại A, kẻ tia phân giác của góc BAC cắt BC tại H.Biết AB=15cm, BC=18cm

a)so sánh góc A và góc C

b)chứng minh rằng tam giác ABH = tam giác ACH

c)vẽ trung tuyến BD của tam giác ABC cắt AH tại G.Chứng minh rằng: tam giác AEG = tam giác ADG

d)tính độ dài AG

e) kẻ đường thẳng CG cắt AB ở E, chứng minh rằng: tam giác AEG = tam giác ADG

BÀI 4 cho tam giác ABC vuông tại A, trên BC lấy điểm D sao cho BA=BD.Qua D kẻ đường vuông góc với BC cắt AC tại E, qua C kẻ đường vuông góc với BE tại H cắt AB tại F

a)chứng minh tam giác ABE = tam giác DBE

b) chứng minh tam giác BCF cân

c) chứng minh 3 điểm F.D,E thẳng hàng

d)trên cạnh CB lấy điểm M sao cho CA=CM.Tính số đo góc DAM

BÀI 5 cho tam giác ABC cân tại A, kẻ BD vuông góc AC, kẻ CE vuông góc AB, BD và CE cắt nhau tại I

a)chứng minh rằng tam giác BDC = tam giác CEB

b)so sánh góc IBE và góc ICD

c) đường thẳng AI cắt BC tại H, chứng minh AI vuông góc BC tại H

BÀI 6 cho tam giác ABC vuông tại A, biết AB=6cm, AC=8cm

a)tính BC

b)trung trực của BC cắt AC tại D và cắt AB tại F, chứng minh góc DBC=DCB

c) trên tia đối của tia DB lấy E sao cho DE=DC, chứng minh tam giác BCE vuông và DF là phân giác góc ADE

d) chứng minh BE vuông góc FC

2
5 tháng 10 2017

BÀI 1 cho tam giác ABC vuông tại A.Kẻ BD là phân giác của góc B.Kẻ AI vuông góc BD tại I.AI cắt BC tại E

a) chứng minh AB=EB

b) chứng minh tam giác BED vuông

c) DE cắt AB tại F, chứng minh AE//FC

BÀI 2 cho tam giác ABC cân tại A, có BD và CE là hai đường trung tuyến cắt nhau tại I

a) chứng minh tam giác IBC cân

b)lấy O thuộc tia IC sao cho IO=IE.Gọi K là trung điểm của IA.Chứng minh AO, BD, CK đồng quy

BÀI 3 cho tam giác ABC cân tại A, kẻ tia phân giác của góc BAC cắt BC tại H.Biết AB=15cm, BC=18cm

a)so sánh góc A và góc C

b)chứng minh rằng tam giác ABH = tam giác ACH

c)vẽ trung tuyến BD của tam giác ABC cắt AH tại G.Chứng minh rằng: tam giác AEG = tam giác ADG

d)tính độ dài AG

e) kẻ đường thẳng CG cắt AB ở E, chứng minh rằng: tam giác AEG = tam giác ADG

BÀI 4 cho tam giác ABC vuông tại A, trên BC lấy điểm D sao cho BA=BD.Qua D kẻ đường vuông góc với BC cắt AC tại E, qua C kẻ đường vuông góc với BE tại H cắt AB tại F

a)chứng minh tam giác ABE = tam giác DBE

b) chứng minh tam giác BCF cân

c) chứng minh 3 điểm F.D,E thẳng hàng

d)trên cạnh CB lấy điểm M sao cho CA=CM.Tính số đo góc DAM

BÀI 5 cho tam giác ABC cân tại A, kẻ BD vuông góc AC, kẻ CE vuông góc AB, BD và CE cắt nhau tại I

a)chứng minh rằng tam giác BDC = tam giác CEB

b)so sánh góc IBE và góc ICD

c) đường thẳng AI cắt BC tại H, chứng minh AI vuông góc BC tại H

BÀI 6 cho tam giác ABC vuông tại A, biết AB=6cm, AC=8cm

a)tính BC

b)trung trực của BC cắt AC tại D và cắt AB tại F, chứng minh góc DBC=DCB

c) trên tia đối của tia DB lấy E sao cho DE=DC, chứng minh tam giác BCE vuông và DF là phân giác góc ADE

d) chứng minh BE vuông góc FC

22 tháng 2 2020

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).

26 tháng 11 2023

a: loading...

b: AD là phân giác của góc BAC

=>\(\widehat{BAD}=\widehat{CAD}=\dfrac{1}{2}\cdot\widehat{BAC}=\dfrac{1}{2}\cdot90^0=45^0\)

Xét ΔADC có \(\widehat{ADH}\) là góc ngoài tại đỉnh D

nên \(\widehat{ADH}=\widehat{DAC}+\widehat{DCA}\)

=>\(\widehat{ADH}=45^0+30^0=75^0\)

b: ΔHAD vuông tại H

=>\(\widehat{HAD}+\widehat{HDA}=90^0\)

=>\(\widehat{HAD}+75^0=90^0\)

=>\(\widehat{HAD}=15^0\)

Vì \(\widehat{DAH}< \widehat{DAB}\)

nên AH nằm giữa AD và AB

=>\(\widehat{DAH}+\widehat{BAH}=\widehat{BAD}\)

=>\(\widehat{BAH}+15^0=45^0\)

=>\(\widehat{BAH}=30^0>\widehat{HAD}\)

d: \(\widehat{ABC}+\widehat{ACB}=90^0\)(ΔABC vuông tại A)

\(\widehat{HAC}+\widehat{C}=90^0\)(ΔAHC vuông tại H)

Do đó: \(\widehat{ABC}=\widehat{HAC}\)

26 tháng 11 2023

`a)`

`b)`

Có `Delta ABC` vuông tại `A` có `hat(C)=30^0`

`=>hat(B)=60^0`

`AD` là phân giác `hat(BAC)=>hat(BAD)=hat(A_3)=1/2hat(BAC)`

`=>hat(BAD)=hat(A_3)=1/2*90^0=45^0`

`Delta BAD` có `hat(B)+hat(D_1)+hat(BAD)=180^0`

hay `60^0+hat(D_1)+45^0=180^0`

`=>hat(D_1)=180^0-60^0-45^0=75^0`

`c)`

Có `Delta AHD` vuông tại `H(AH⊥BC)` có `hat(D_1)=75^0`

`=>hat(A_1)=15^0`

Có `hat(A_1)+hat(A_2)=hat(BAD)`

hay`15^0+hat(A_2)=45^0`

`=>hat(A_2)=30^0`

Có `15^0<30^0`

`=>hat(A_1)<hat(A_2)`

`d)`

Có `hat(A_1)+hat(A_3)=hat(HAC)`

hay `15^0+45^0=hat(HAC)`

`=>hat(HAC)=60^0`

Có `60^0=60^0`

`=>hat(B)=hat(HAC)`