Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có (x+\(\frac{2}{3}\))\(^2\) ≥ 0 ∀ x
=> MinA= \(\frac{1}{2}\)↔\(\left(x+\frac{2}{3}\right)^2\)=0 ⇒x+\(\frac{2}{3}\)=0⇒ x=\(\frac{-2}{3}\)
\(\frac{x^2+15}{x^2+3}=1+\frac{12}{x^2+3}\ge5\)
...............................................
a: \(A=\left|x+1\right|+5\ge5\forall x\)
Dấu '=' xảy ra khi x=-1
b: \(B=\dfrac{x^2+3+12}{x^2+3}=1+\dfrac{12}{x^2+3}\le\dfrac{12}{3}+1=4+1=5\)
Dấu '=' xảy ra khi x=0
a) (2x-3)+4=2x+1\(\ge\)1
\(\Rightarrow\)GTNN của biểu thức trên là 1
\(\Leftrightarrow\)2x=0\(\Leftrightarrow\)x=0
Bg
Ta có: A = \(\frac{2012}{9-x}\) (x \(\inℤ\); x \(\ne\)9) (x = 9 thì mẫu = 0, vô lý)
Để A lớn nhất thì 9 - x nhỏ nhất và 9 - x > 0
=> 9 - x = 1
=> x = 9 - 1
=> x = 8
=> A = \(\frac{2012}{9-x}=\frac{2012}{1}=2012\)
Vậy A đạt GTLN khi A = 2012 với x = 8
\(A=31-\sqrt{2x+7}\)
Ta có: điều kiện để có căn:\(\sqrt{2x+7}\) thì :\(2x+7\ge0\Rightarrow2x\ge-7\Rightarrow x\ge-3,5\)
Với mọi \(x\ge-3,5\) ta có:
\(\sqrt{2x+7}\ge0\)
\(\Rightarrow A=31-\sqrt{2x+7}\le31\)
Dấu "=" xảy ra khi:
\(\sqrt{2x+7}=0\Rightarrow2x=-7\Rightarrow x=-3,5\)
Vậy \(MAX_A=31\) khi \(x=-3,5\)
\(B=-9+\sqrt{7+x}\)
Ta có: điều kiện để có căn \(\sqrt{7+x}\) thì:
\(x\ge-7\)
Với mọi \(x\ge-7\) ta có:
\(\sqrt{7+x}\ge0\)
\(\Rightarrow-9+\sqrt{7+x}\ge-9\)
Dấu "=" xảy ra khi:
\(\sqrt{7+x}=0\Rightarrow x=-7\)
\(\Rightarrow MIN_B=-9\) khi \(x=-7\)
a, Sửa đề: Tìm GTLN của biểu thức
Vì \(\sqrt{2x+7}\ge0\) \(\Rightarrow-\sqrt{2x+7}\le0\)
\(\Rightarrow31-\sqrt{2x+7}\le31\)
Dấu ''='' xảy ra khi :
\(-\sqrt{2x+7}=0\Rightarrow2x+7=0\Rightarrow x=-3,5\)
Vậy \(A_{Max}=31\) khi và chỉ khi x = -3,5
b, Tìm GTNN của B
Giải: \(B=-9+\sqrt{7+x}=\sqrt{7+x}-9\)
Vì \(\sqrt{7+x}\ge0\Rightarrow\sqrt{7+x}-9\ge-9\)
Dấu ''='' xảy ra khi \(\sqrt{7+x}=0\Rightarrow x=-7\)
Vậy \(B_{Min}=-9\) khi x = -7
p/s: Lần sau gửi đề cẩn thận hơn ||^^
a) \(A=31-\sqrt{2x+7}\)
Ta có: \(-\sqrt{2x+7}\le0\forall x\)
\(\Rightarrow31-\sqrt{2x+7}\le31\forall x\)
Vậy MIN A = 31