K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2015

Ta có:\(A=\frac{10^8+2}{10^8-1}\)

\(\Rightarrow A=\frac{10^8-1+3}{10^8-1}=\frac{10^8-1}{10^8-1}+\frac{3}{10^8-1}=1+\frac{3}{10^8-1}\)

Ta có:\(B=\frac{10^8}{10^8-3}\)

\(\Rightarrow B=\frac{10^8-3+3}{10^8-3}=\frac{10^8-3}{10^8-3}+\frac{3}{10^8-3}=1+\frac{3}{10^8-3}\)

Vì \(\frac{3}{10^8-1}

\(A=\frac{10^8+2}{10^8-1}=1+\frac{3}{10^8-1}>1+\frac{3}{10^8-3}=\frac{10^8}{10^8-3}=B\)

vậy A>B

\(A=\frac{10^8+2}{10^8+1}=1+\frac{1}{10^8+1}

22 tháng 6 2015

10^8+2>10^8

10^8+1<10^8-3

8 tháng 8 2017

\(B=\frac{10^8}{10^{8-3}}=\frac{10^8}{10^5}=10^3\)

\(A=\frac{10^8+2}{10^8-1}=\frac{10}{10^8-1}+\frac{2}{10^8-1}\)

Vì \(\frac{10}{10^8-1}< 1+\frac{2}{10^8-1}< 1\)

\(\Rightarrow A< B\)

15 tháng 10 2016

a. 2^10+2^11+2^12 chia cho 7 là một số tự nhiên 

   2^10+2^11+2^12

= 2^10 + 2^10 x2 + 2^10 x 2^2

=2^10 x ( 1+2+2^2)

=1024 x      7

=   7168

Vậy 2^10+2^11+2^12 chia cho 7 bằng 1024 và 1024 là một số tự nhiên

a) Ta có: \(\dfrac{-5}{7}\left(\dfrac{14}{5}-\dfrac{7}{10}\right):\left|-\dfrac{2}{3}\right|-\dfrac{3}{4}\left(\dfrac{8}{9}+\dfrac{16}{3}\right)+\dfrac{10}{3}\left(\dfrac{1}{3}+\dfrac{1}{5}\right)\)

\(=\dfrac{-5}{7}\cdot\dfrac{3}{2}\cdot\dfrac{21}{10}-\dfrac{3}{4}\cdot\dfrac{56}{3}+\dfrac{10}{3}\cdot\dfrac{8}{15}\)

\(=\dfrac{-9}{4}-14+\dfrac{16}{9}\)

\(=\dfrac{-1621}{126}\)

b) Ta có: \(\dfrac{17}{-26}\cdot\left(\dfrac{1}{6}-\dfrac{5}{3}\right):\dfrac{17}{13}-\dfrac{20}{3}\left(\dfrac{2}{5}-\dfrac{1}{4}\right)+\dfrac{2}{3}\left(\dfrac{6}{5}-\dfrac{9}{2}\right)\)

\(=\dfrac{-17}{26}\cdot\dfrac{13}{17}\cdot\dfrac{-3}{2}-\dfrac{20}{3}\cdot\dfrac{3}{20}+\dfrac{2}{3}\cdot\dfrac{-33}{10}\)

\(=\dfrac{3}{4}-1-\dfrac{11}{5}\)

\(=-\dfrac{49}{20}\)

a: \(=\left(10\cdot2\right)^8=20^8\)

b: \(=\left(\dfrac{10}{2}\right)^8=5^8\)

c: \(=25^4\cdot4^4=100^4\)

d: \(=\left(225\cdot9\right)^4=2025^4\)

e: \(=3^6:5^6=\left(\dfrac{3}{5}\right)^6\)

26 tháng 10 2023

\(a,\left(x+2\right)^{10}+\left(x+2\right)^8=0\\ \Leftrightarrow\left(x+2\right)^8\left[\left(x+2\right)^2+1\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x+2\right)^8=0\\\left(x+2\right)^2+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x+2=0\\\left(x+2\right)^2=-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\x\in\varnothing\end{matrix}\right.\\ b,\left(x+3\right)^{10}-\left(x+3\right)^8=0\\ \Leftrightarrow\left(x+3\right)^8\left[\left(x+3\right)^2-1\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x+3\right)^8=0\\\left(x+3\right)^2-1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\\left(x+3\right)^2=1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x+3=1\\x+3=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2\\x=-4\end{matrix}\right.\)