Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 1h công nhân thứ 1,2 làm được a,ba,b (phần công việc )
Theo bài ta có :18(a+b)=1
6a+12b=1\2
{a=1\36
b=1\36
→→ Nếu làm riêng thì mỗi người hoàn thành công việc đó trong 36h
*tk
Gọi thời gian người thứ nhất làm 1 mình xong công việc là x(h)
Gọi thời gian người thứ hai làm một mình xong việc là y(h),(x,y>18)
Trong 1 giờ người thứ nhất làm được :x (công việc); người thứ 2 làm được :y (công việc).
Vì 2 người cùng làm thì trong 18h thì xong việc nên nên ta có phương trình sau: x+y=118(1)
Nếu người thứ nhất làm 6h và người thứ 2 làm 12h thì chỉ hoàn thành được 50% công việc nên ta có phương trình sau: 6x+12y=50%=12(2)
Từ (1) và (2) ta có hệ phương trình:
x+y=118 và6x+12y=12
x=36(tm) và y=36(tm
Vậy thời gian người thứ nhất làm 1 mình xong công việc là 36h, thời gian người thứ hai làm một mình xong việc là 36h.
Gọi thời gian người thứ nhất làm hết công việc là : x ( x > 8 ; giờ )
Trong 1 giờ người thứ nhất làm được : \(\frac{1}{x}\) công việc
Trong 1 giờ người thứ 2 làm được : \(\frac{1}{8}-\frac{1}{x}=\frac{x-8}{8x}\) ( công việc )
Trong 3 giờ người thứ nhất làm được : \(\frac{3}{x}\) ( công việc )
Trong 4 giờ người thứ hai làm được : \(\frac{4x-32}{8x}\) ( công việc )
Theo đề bài , ta có phương trình :
\(\frac{3}{x}+\frac{4x-32}{8x}=\frac{4}{10}\)
\(\Leftrightarrow\frac{24+4x-32}{8x}=\frac{4}{10}\)
\(\Leftrightarrow\frac{5\left(4x-8\right)}{40x}=\frac{16x}{40x}\)
\(\Leftrightarrow4x=40\)
\(x=10\) ( t/ m)
Thời gian người thứ 2 làm xong công việc là : \(1:\left(\frac{10-8}{8.10}\right)=40\left(h\right)\)
Vậy mỗi người làm riêng 1 mình thì sau 40h sẽ xong
Chúc bạn học tốt !!!
Năng suất của 2 người làm chung là: 1/12 CV/h
Phần công việc hai người đã làm trong 4h là: 4x1/12 = 4/12 = 1/3 CV
Phần công việc còn lại là: 1 - 1/3 = 2/3 CV
Năng suất làm việc của người thứ hai làm phần việc còn lại trong 10h: 2/3 : 10 = 2/30 = 1/15 CV/h
Với năng suất đó, nếu người thứ hai làm một mình thì thời gian hoàn thành là: 1 : 1/15 = 15h
Gọi x ( giờ) là thời gian làm một mình xong công việc của người thứ hai mà x >12
Trong 1 giờ người thứ hai làm được \(\frac{1}{x}\) công việc
Trong 1 giờ cả hai người làm được \(\frac{1}{12}\) công việc
Do họ làm chung với nhau trong 4h thì người thứ nhất đi làm việc khác, người thứ hai phải làm nốt phần việc còn lại trong 10h nên ta được phương trình
4.(\(\frac{1}{12}\)) + 10.(\(\frac{1}{x}\)) = 1
=> x = 15
Gọi thời gian hoàn thành công việc 2 công nhân lần lượt là a ; b ( a ; b > 0 )
Theo bài ra ta có hệ
\(\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{12}\\\dfrac{4}{a}+\dfrac{14}{b}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{60}\\\dfrac{1}{b}=\dfrac{1}{15}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=60\\b=15\end{matrix}\right.\left(tm\right)\)
Vậy ...
Gọi thời gian làm riêng hoàn thành công việc của người thứ nhất và người thứ hai lần lượt là x(giờ) và y(giờ)
(Điều kiện: x>0 và y>0)
Trong 1 giờ, người thứ nhất làm được \(\dfrac{1}{x}\)(công việc)
Trong 1 giờ, người thứ hai làm được \(\dfrac{1}{y}\)(công việc)
Trong 1 giờ, hai người làm được \(\dfrac{1}{18}\)(công việc)
Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{18}\left(1\right)\)
Trong 6 giờ, người thứ nhất làm được \(6\cdot\dfrac{1}{x}=\dfrac{6}{x}\)(công việc)
Trong 12 giờ, người thứ hai làm được \(12\cdot\dfrac{1}{y}=\dfrac{12}{y}\left(côngviệc\right)\)
Nếu người thứ nhất làm trong 6 giờ và người thứ hai làm trong 12 giờ thì hai người làm được 50% công việc nên ta có:
\(\dfrac{6}{x}+\dfrac{12}{y}=\dfrac{1}{2}\left(2\right)\)
Từ (1),(2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{18}\\\dfrac{6}{x}+\dfrac{12}{y}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12}{x}+\dfrac{12}{y}=\dfrac{12}{18}=\dfrac{2}{3}\\\dfrac{6}{x}+\dfrac{12}{y}=\dfrac{1}{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{6}{x}=\dfrac{2}{3}-\dfrac{1}{2}=\dfrac{1}{6}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{18}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=36\\y=36\end{matrix}\right.\left(nhận\right)\)
Vậy: Thời gian làm riêng hoàn thành công việc của người thứ nhất là 36 giờ
Thời gian làm riêng hoàn thành công việc của người thứ hai là 36 giờ
Gọi thời gian làm riêng của người thứ nhất là x
Thời gian làm riêng của người thứ hai là x+3
Theo đề, ta có: 1/x+1/(x+3)=1/2
=>2x+6+2x=x(x+3)
=>x2+3x=4x+6
=>x2-x-6=0
=>x=3
Vậy: Thời gian làm riêng của người 1 và người 2 lần lượt là 3h và 6h