Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\dfrac{1}{4}\times\left(\dfrac{4}{1\times5}+\dfrac{4}{5\times9}+\dfrac{4}{9\times13}+...+\dfrac{4}{125\times129}\right)\)
\(=\dfrac{1}{4}\times\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{125}-\dfrac{1}{129}\right)\)
\(=\dfrac{1}{4}\times\left(1-\dfrac{1}{129}\right)=\dfrac{1}{4}\times\dfrac{128}{129}=\dfrac{32}{129}\)
sửa đề nhé:
\(\frac{5}{1\times3}+\frac{5}{3\times5}+...+\frac{5}{99\times101}\)
\(5\times\frac{1}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+...+\frac{2}{99\times101}\right)\)
\(=\frac{5}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{5}{2}\times\left(1-\frac{1}{101}\right)\)
\(=\frac{5}{2}\times\frac{100}{101}\)
\(=\frac{250}{101}\)
\(D=\dfrac{1}{1\cdot5}+\dfrac{1}{5\cdot9}+...+\dfrac{1}{21\cdot25}\)
\(4D=\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+...+\dfrac{4}{21\cdot25}\)
\(4D=1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{21}-\dfrac{1}{25}\)
\(4D=1-\dfrac{1}{25}=\dfrac{24}{25}\)
\(D=\dfrac{24}{25}\cdot\dfrac{1}{4}=\dfrac{4\cdot6}{25\cdot4}=\dfrac{6}{25}\)
3/(1×5) + 3/(5×9) + 3/(9×13) + 3/(13×17) + 3/(17×21)
= 3/4 × (1 - 1/5 + 1/5 - 1/9 + 1/9 - 1/13 + 1/13 - 1/17 + 1/17 - 1/21)
= 3/4 × (1 - 1/21)
= 3/4 × 20/21
= 5/7
\(\dfrac{4\times x}{1\times5}\) + \(\dfrac{4\times x}{5\times9}\) + \(\dfrac{4\times x}{9\times13}\) + \(\dfrac{4\times x}{13\times17}\) = 16
\(x\times\left(\dfrac{4}{1\times5}+\dfrac{4}{5\times9}+\dfrac{4}{9\times13}+\dfrac{4}{13\times17}\right)\) = 16
\(x\) \(\times\) (\(\dfrac{1}{1}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{9}\) + \(\dfrac{1}{9}\) - \(\dfrac{1}{13}\) + \(\dfrac{1}{13}\) - \(\dfrac{1}{17}\)) = 16
\(x\) \(\times\) ( \(\dfrac{1}{1}\) - \(\dfrac{1}{17}\)) = 16
\(x\) \(\times\) \(\dfrac{16}{17}\) = 16
\(x\) = 16 : \(\dfrac{16}{17}\)
\(x\) = 17
1.5+1.5
=5+5
=10