K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2019

\(x^2+8x+15\)

\(=x^2+3x+5x+15\)

\(=x\left(x+3\right)+5\left(x+3\right)\)

\(=\left(x+5\right)\left(x+3\right)\)

28 tháng 7 2019

1/ \(\left(2x-1\right)^2-3\left(2x-1\right)^2=0\)

\(\left(2x-1\right)^2\left(1-3\right)=0\)

\(\left(2x-1\right)^2\cdot\left(-2\right)=0\)

\(\Rightarrow\text{ }\left(2x-1\right)^2=0\)

\(2x-1=0\)

\(2x=0+1=1\)

\(x=\frac{1}{2}\)

28 tháng 7 2019

1) \(\left(2x-1\right)^2-3\left(2x-1\right)^2=0\)

=> \(\left(2x-1\right)^2\left(1-3\right)=0\)

=> \(\left(2x-1\right)^2.\left(-2\right)=0\)

=> \(\left(2x-1\right)^2=0\)

=> \(2x-1=0\)

=> \(2x=1\)

=> \(x=1:2=\frac{1}{2}\)

3 tháng 10 2017

A) x2+4y22+z22-4x-6z+15>0 <=> (x2-2×2×x+22)+4y2+(z2-2×3×z+32) +(15 -22-32) >0

<=>(x-2)2+4y22+(z-3)2

3 tháng 10 2017

B) giải

(2X)2+ 2×2X×1 +1 >=0 với mọi X (   (2x+1) )

=> (2x+1)2+2 >0

6 tháng 10 2018

a) Ta có \(2x^2-8x+13=2x^2-8x+8+5\)

\(=2\left(x^2-4x+4\right)+5\)

\(=2\left(x-2\right)^2+5\ge5\forall x\)

6 tháng 10 2018

Giả sử trước khi làm nhé 

\(a)\)\(2x^2-8x+13>0\)

\(\Leftrightarrow\)\(4x^2-16x+26>0\)

\(\Leftrightarrow\)\(\left(4x^2-16+16\right)+10>0\)

\(\Leftrightarrow\)\(\left(2x-4\right)^2+10\ge10>0\) ( luôn đúng ) 

Vậy ... 

\(b)\)\(-2+2x-x^2< 0\)

\(\Leftrightarrow\)\(x^2-2x+2>0\)

\(\Leftrightarrow\)\(\left(x^2-2x+1\right)+1>0\)

\(\Leftrightarrow\)\(\left(x-1\right)^2+1\ge1>0\) ( luôn đúng ) 

Vậy ... 

Chúc bạn học tốt ~ 

18 tháng 8 2020

1. \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\)

\(\Leftrightarrow5\left(7x-1\right)+60x=6\left(16-x\right)\)

\(\Leftrightarrow35x-5+60x=96-6x\)

\(\Leftrightarrow95x-5=96-6x\)

\(\Leftrightarrow95x+6x=96+5\)

\(\Leftrightarrow101x=101\)

\(\Leftrightarrow x=1\)

2. \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\) 

\(\Leftrightarrow3\left(10x+3\right)=36+4\left(6+8x\right)\)

\(\Leftrightarrow30x+9=36+24+32x\)

\(\Leftrightarrow30x+9=32x+60\)

\(\Leftrightarrow30x-32x=60-9\)

\(\Leftrightarrow-2x=51\)

\(\Leftrightarrow x=-\frac{51}{2}\)

3. \(\frac{8x-3}{4}-\frac{3x-2}{2}=\frac{2x-1}{2}+\frac{x+3}{4}\)

\(\Leftrightarrow8x-3-2\left(3x-2\right)=2\left(2x-1\right)+x+3\)

\(\Leftrightarrow8x-3-6x+4=4x-2+x+3\)

\(\Leftrightarrow2x+1=5x+1\)

\(\Leftrightarrow2x=5x\)

\(\Leftrightarrow x=0\)

19 tháng 8 2020

4) \(\frac{3\left(3-x\right)}{8}+\frac{2\left(5-x\right)}{3}=\frac{1-x}{2}-2\)

=> \(\frac{9-3x}{8}+\frac{10-2x}{3}=\frac{1-x}{2}-\frac{2}{1}\)

=> \(\frac{3\left(9-3x\right)}{24}+\frac{8\left(10-2x\right)}{24}=\frac{12\left(1-x\right)}{24}-\frac{48}{24}\)

=> \(\frac{27-9x}{24}+\frac{80-16x}{24}=\frac{12-12x}{24}-\frac{48}{24}\)

=> \(\frac{27-9x+80-16x}{24}=\frac{12-12x-48}{24}\)

=> 27 - 9x + 80 - 16x = 12 - 12x - 48

=> 27 - 9x + 80 - 16x - 12 + 12x + 48 = 0

=> (27 + 80 - 12 + 48) + (-9x - 16x + 12x) = 0

=> 143 - 13x = 0

=> 13x = 143

=> x = 11

5) \(\frac{2\left(x-3\right)}{7}+\frac{x-5}{3}-\frac{13x+4}{21}=0\)

=> \(\frac{2x-6}{7}+\frac{x-5}{3}-\frac{13x+4}{21}=0\)

=> \(\frac{3\left(2x-6\right)}{21}+\frac{7\left(x-5\right)}{21}-\frac{13x+4}{21}=0\)

=> \(\frac{6x-18}{21}+\frac{7x-35}{21}-\frac{13x+4}{21}=0\)

=> \(\frac{6x-18+7x-35-13x-4}{21}=0\)

=> 6x - 18 + 7x - 35 - 13x - 4 = 0

=> (6x + 7x - 13x) + (-18 - 35 - 4) = 0

=> -57 = 0(vô nghiệm)

6) \(\frac{6x+5}{2}-\left(2x+\frac{2x+1}{2}\right)=\frac{10x+3}{4}\)

=> \(\frac{6x+5}{2}-\frac{10x+3}{4}=2x+\frac{2x+1}{2}\)

=> \(\frac{2\left(6x+5\right)}{4}-\frac{10x+3}{4}=\frac{8x}{4}+\frac{2\left(2x+1\right)}{4}\)

=> \(\frac{12x+10}{4}-\frac{10x+3}{4}=\frac{8x}{4}+\frac{4x+2}{4}\)

=> \(\frac{12x+10-\left(10x+3\right)}{4}=\frac{8x+4x+2}{4}\)

=> \(\frac{12x+10-10x-3}{4}=\frac{12x+2}{4}\)

=> \(12x+10-10x-3=12x+2\)

=> \(2x+10-3=12x+2\)

=> 2x + 10 - 3 - 12x - 2 = 0

=> (2x - 12x) + (10 - 3 - 2) = 0

=> -10x + 5 = 0

=> -10x = -5

=> x = 1/2

7) \(\frac{2x-1}{5}-\frac{x-2}{3}-\frac{x+7}{15}=0\)

=> \(\frac{3\left(2x-1\right)}{15}-\frac{5\left(x-2\right)}{15}-\frac{x+7}{15}=0\)

=> \(\frac{6x-3}{15}-\frac{5x-10}{15}-\frac{x+7}{15}=0\)

=> \(\frac{6x-3-\left(5x-10\right)-\left(x+7\right)}{15}=0\)

=> 6x - 3 - 5x + 10 - x - 7 = 0

=> (6x - 5x - x) + (-3 + 10 - 7) = 0

=> 0x + 0 = 0

=> 0x = 0

=> x tùy ý

Bài 8 tự làm nhé

28 tháng 7 2019

Bài Làm:

\(1,\left(2x-1\right)^2-3\left(2x-1\right)^2=0\)

\(\Leftrightarrow-2\left(2x-1\right)^2=0\)

\(\Leftrightarrow\left(2x-1\right)^2=0\)

\(\Leftrightarrow2x-1=0\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy ...

\(2,\left(x-1\right)^2\left(x+1\right)=x+1\)

\(\Leftrightarrow\left(x-1\right)^2\left(x+1\right)-\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[\left(x-1\right)^2-1\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left[x^2-2x+1-1\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-2x\right)=0\)

\(\Leftrightarrow x\left(x+1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\\x-2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=2\end{matrix}\right.\)

Vậy ...

\(3,x^4-3x^2=x^2\)

\(\Leftrightarrow x^4-3x^2-x^2=0\)

\(\Leftrightarrow x^4-4x^2=0\)

\(\Leftrightarrow x^2\left(x^2-4\right)=0\)

\(\Leftrightarrow x^2\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

Vậy ...

Chúc pạn hok tốt!!!

5 tháng 3 2019

a) Đề ( \(x\ne\pm1\))

>\(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}=\frac{4}{\left(x+1\right)\left(x-1\right)}\\ \Leftrightarrow\left(x+1\right)^2-\left(x-1\right)^2=4\\ \Leftrightarrow\left(x+1-x+1\right)\left(x+1+x-1\right)=4\\ \Leftrightarrow2.2x=4\Leftrightarrow x=1\left(kothỏa\right)\)

Vậy \(S=\varnothing\)

5 tháng 3 2019

b) đề \(\left(x\ne-\frac{1}{2},\frac{1}{2}\right)\)

\(\frac{32x^2}{12\left(1-2x\right)\left(1+2x\right)}=\frac{-8x\left(1+2x\right)}{12\left(1-2x\right)\left(1+2x\right)}-\frac{3\left(1+8x\right)\left(1-2x\right)}{12\left(1-2x\right)\left(1+2x\right)}\\ \Leftrightarrow32x^2=-8x-16x^2-3-12x+48x^2\\ \Leftrightarrow20x+3=0\Leftrightarrow x=\frac{20}{3}\left(thỏadk\right)\)

Vậy \(S=\left\{\frac{20}{3}\right\}\)