\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{n-1}}+\d...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\Leftrightarrow\dfrac{1}{3}A=\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{n+1}}\)

\(\Leftrightarrow-\dfrac{2}{3}A=\dfrac{1}{3^{n+1}}-\dfrac{1}{3}\)

hay \(A=\left(\dfrac{1}{3^{n+1}}-\dfrac{1}{3}\right):\dfrac{-2}{3}=\dfrac{1-3^n}{3^{n+1}}\cdot\dfrac{3}{-2}=\dfrac{3^n-1}{3^n\cdot2}\)

b: \(\dfrac{1}{3}B=\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2009}}\)

\(\Leftrightarrow B\cdot\dfrac{-2}{3}=\dfrac{1}{3^{2009}}-\dfrac{1}{3}=\dfrac{1-3^{2008}}{3^{2009}}\)

\(\Leftrightarrow B=\dfrac{3^{2008}-1}{3^{2009}}:\dfrac{2}{3}=\dfrac{3^{2008}-1}{2\cdot3^{2008}}\)

18 tháng 7 2017

a, Theo bài ra ta có:

\(M=\dfrac{2007}{1}+1+\dfrac{2006}{2}+1+.......+\dfrac{2}{2006}+1+\dfrac{1}{2007}+1-2007\)

( Ta thêm 1 vào mỗi một số hạng trong M nên phải bớt đi 2017 vì có 2017 số hạng ) ;'

\(=>M=2008+\dfrac{2008}{2}+\dfrac{2008}{3}+......+\dfrac{2008}{2007}+\dfrac{2008}{2007}-2007\)

\(=>M=\dfrac{2008}{2}+\dfrac{2008}{3}+\dfrac{2008}{4}+.....+\dfrac{2008}{2006}+\dfrac{2008}{2007}+1\)

Ta thấy xuất hiện 2008 chung nên đặt ra ngoài ta có:

\(=>M=2008\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+....+\dfrac{1}{2006}+\dfrac{1}{2007}+\dfrac{1}{2008}\right)\)

\(=>M:N=2008\)

Câu b đợi 1 chút nha.......

18 tháng 7 2017

b, \(M=\dfrac{1}{11.13}+\dfrac{1}{13.15}+...+\dfrac{1}{31.33}\)

\(=\dfrac{1}{2}\left(\dfrac{2}{11.13}+\dfrac{2}{13.15}+...+\dfrac{2}{31.33}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{11}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{15}+...+\dfrac{1}{31}-\dfrac{1}{33}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{11}-\dfrac{1}{33}\right)\)

\(=\dfrac{1}{33}\)

\(N=\dfrac{12}{11.13.15}+\dfrac{12}{13.15.17}+...+\dfrac{12}{31.33.35}\)

\(=3\left(\dfrac{4}{11.13.15}+\dfrac{4}{13.15.17}+...+\dfrac{4}{31.33.35}\right)\)

\(=3\left(\dfrac{1}{11.13}-\dfrac{1}{13.15}+\dfrac{1}{13.15}-\dfrac{1}{15.17}+...+\dfrac{1}{31.33}-\dfrac{1}{33.35}\right)\)

\(=3\left(\dfrac{1}{11.13}-\dfrac{1}{33.35}\right)\)

\(=\dfrac{92}{5005}\)

\(\Rightarrow M:N=\dfrac{1}{33}:\dfrac{92}{5005}=\dfrac{455}{276}\)

Vậy...

29 tháng 11 2020

\(B=1+\left(\frac{2007}{2}+1\right)+\left(\frac{2006}{3}+1\right)+...+\left(\frac{1}{2008}+1\right)=2009\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}+\frac{1}{2009}\right)\Rightarrow\frac{A}{B}=\frac{1}{2009}\)

6 tháng 3 2018

Đặt: \(L_2=\dfrac{2007}{1}+\dfrac{2006}{2}+\dfrac{2005}{3}+...+\dfrac{2}{2006}+\dfrac{1}{2007}\)

\(L_2=1+\left(\dfrac{2006}{2}+1\right)+\left(\dfrac{2005}{3}+1\right)+...+\left(\dfrac{2}{2006}+1\right)+\left(\dfrac{1}{2007}+1\right)\)

\(L_2=\dfrac{2008}{2008}+\dfrac{2008}{2}+\dfrac{2008}{3}+...+\dfrac{2008}{2006}+\dfrac{2008}{2007}\)

\(L_2=2008\left(\dfrac{1}{2}+\dfrac{1}{3}+..+\dfrac{1}{2006}+\dfrac{1}{2007}+\dfrac{1}{2008}\right)\)

\(\dfrac{L_1}{L_2}=\dfrac{1}{2008}\)

20 tháng 12 2017

1)\(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}}{\dfrac{2008}{1}+\dfrac{2007}{2}+\dfrac{2006}{3}+...+\dfrac{2}{2007}+\dfrac{1}{2008}}\)

\(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}}{2008+\dfrac{2007}{2}+\dfrac{2006}{3}+...+\dfrac{2}{2007}+\dfrac{1}{2008}}\)

\(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}}{1+\left(\dfrac{2007}{2}+1\right)+\left(\dfrac{2006}{3}+1\right)+...+\left(\dfrac{2}{2007}+1\right)+\left(\dfrac{1}{2008}+1\right)}\)

\(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}}{\dfrac{2009}{2009}+\dfrac{2009}{2}+\dfrac{2009}{3}+...+\dfrac{2009}{2007}+\dfrac{2009}{2008}}\)

\(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}}{2009\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}\right)}\)

\(\dfrac{A}{B}=\dfrac{1}{2009}\)

2) \(A=\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{19}{9^2.10^2}\)

\(A=\dfrac{2^2-1^2}{1^2.2^2}+\dfrac{3^2-2^2}{2^2.3^2}+\dfrac{4^2-3^2}{3^2.4^2}+...+\dfrac{10^2-9^2}{9^2.10^2}\)

\(A=1-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+\dfrac{1}{3^2}-\dfrac{1}{4^2}+...+\dfrac{1}{9^2}-\dfrac{1}{10^2}\)

\(A=1-\dfrac{1}{10^2}< 1\left(đpcm\right)\)

26 tháng 2 2018

\(B=\dfrac{2008}{1}+\dfrac{2007}{2}+\dfrac{2006}{3}+...+\dfrac{2}{2007}+\dfrac{1}{2008}\)

\(B=1+\left(\dfrac{2007}{2}+1\right)+\left(\dfrac{2006}{3}+1\right)+...+\left(\dfrac{2}{2007}+1\right)+\left(\dfrac{1}{2008}+1\right)\)

\(B=\dfrac{2009}{2009}+\dfrac{2009}{2}+\dfrac{2009}{3}+..+\dfrac{2009}{2007}+\dfrac{2009}{2008}\)

\(B=2009\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}\right)\)

\(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}}{2009\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}\right)}\)

\(\dfrac{A}{B}=\dfrac{1}{2009}\)

3 tháng 10 2018

a, \(A=\dfrac{10^{15}+1}{10^6+1}>1\);\(B=\dfrac{10^6+1}{10^{17}+1}< 1\)

\(A>B\)

b, \(D=\dfrac{2^{2007}+3}{2^{2006}-1}=\dfrac{2^{2008}+6}{2^{2007}-2}\)

Ta có : \(\dfrac{2^{2008}-3}{2^{2007}-1}< \dfrac{2^{2008}-3}{2^{2007}-2}< \dfrac{2^{2008}+6}{2^{2007}-2}\)

\(C< D\)

c, \(M=\dfrac{3}{8^3}+\dfrac{7}{8^4}=\dfrac{3}{8^3}+\dfrac{3}{8^4}+\dfrac{4}{8^4}\)

\(N=\dfrac{7}{8^3}+\dfrac{3}{8^4}=\dfrac{3}{8^3}+\dfrac{4}{8^3}+\dfrac{3}{8^4}\)

\(\dfrac{4}{8^4}< \dfrac{4}{8^3}\)

\(M< N\)

4 tháng 10 2018
Lũy thừa của một số hữu tỉ (tiếp theo...)Lũy thừa của một số hữu tỉ (tiếp theo...) Lũy thừa của một số hữu tỉ (tiếp theo...)
26 tháng 9 2017

\(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+....+\dfrac{1}{18.19.20}=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{18.19}-\dfrac{1}{19.20}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{19.20}\right)\\ =\dfrac{1}{4}-\dfrac{1}{2.19.20}< \dfrac{1}{4}\)

Cái B TT nhé

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+....+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{\left(n-1\right)n}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\\ =1-\dfrac{1}{n}< 1\)

D TT

E mk thấy nó ss ớ

26 tháng 9 2017

ai thế

22 tháng 9 2017

Ta có:\(\dfrac{1}{2^3}< \dfrac{1}{1.2.3};\dfrac{1}{3^3}< \dfrac{1}{2.3.4};\dfrac{1}{4^3}< \dfrac{1}{3.4.5};...;\dfrac{1}{n^3}< \dfrac{1}{\left(n-1\right).n.\left(n+1\right)}\)Vậy:\(\dfrac{1}{2^3}+\dfrac{1}{3^3}+\dfrac{1}{4^3}+...+\dfrac{1}{n^3}< \dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{\left(n-1\right).n.\left(n+1\right)}\)Ta có:\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{\left(n-1\right).n.\left(n+1\right)}\)

=\(\dfrac{1}{2}.\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{\left(n-1\right).n}-\dfrac{1}{n.\left(n+1\right)}\right)\)=\(\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{n.\left(n+1\right)}\right)\)

=\(\dfrac{1}{4}-\dfrac{1}{2n.\left(n+1\right)}< \dfrac{1}{4}\)

Vì:\(\dfrac{1}{2^3}+\dfrac{1}{3^3}+...+\dfrac{1}{n^3}< \dfrac{1}{4}-\dfrac{1}{2n.\left(n+1\right)}< \dfrac{1}{4}\)

\(\Rightarrow\dfrac{1}{2^3}+\dfrac{1}{3^3}+...+\dfrac{1}{n^3}< \dfrac{1}{4}\) hay \(A< \dfrac{1}{4}\)