Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{5.10}+\frac{2}{10.15}+\frac{2}{15.20}+...+\frac{2}{2015.2020}\)
\(=2.\left(\frac{1}{5.10}+\frac{1}{10.15}+\frac{1}{15.20}+...+\frac{1}{2015.2020}\right)\)
\(=2.\left(\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+\frac{1}{15}-\frac{1}{20}+...+\frac{1}{2015}-\frac{1}{2020}\right)\)
\(=2.\left(\frac{1}{5}-\frac{1}{2020}\right)\)
\(=2.\frac{403}{2020}=\frac{403}{1010}\)
\(\frac{2}{5.10}+\frac{2}{10.15}+\frac{2}{15.20}+...+\frac{2}{2015.2020}\)
=\(\frac{2}{5}\left(\frac{5}{5.10}+\frac{5}{10.15}+\frac{5}{15.20}+...+\frac{5}{2015.2020}\right)\)
=\(\frac{2}{5}\left(\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+\frac{1}{15}-\frac{1}{20}+...+\frac{1}{2015}-\frac{1}{2016}\right)\)
=\(\frac{2}{5}.\left(\frac{1}{5}-\frac{1}{2020}\right)\)
=\(\frac{2}{5}.\frac{403}{2020}\)
=\(\frac{403}{5005}\)
\(A=\frac{1}{1.5}+\frac{1}{5.10}+\frac{1}{10.15}+...+\frac{1}{95.100}\)
\(\Rightarrow\)\(5A=1+\frac{5}{5.10}+\frac{5}{10.15}+...+\frac{5}{95.100}\)
\(=1+\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+...+\frac{1}{95}-\frac{1}{100}\)
\(=1+\frac{1}{5}-\frac{1}{100}=\frac{119}{100}\)
\(\Rightarrow\)\(A=\frac{119}{500}\)
A=1/1.5+1/5.10+....+1/95.100
=(5/1.5+5/5.10+...+5/95.100):5
=(1-1/5+1/5-1/10+...+1/95-1/100):5
=(1-1/100):5
=99/100:5
=99/500
\(1-\frac{1}{5.10}-\frac{1}{10.15}-\frac{1}{15.20}-...-\frac{1}{95.100}\)
\(=1-\left(\frac{1}{5.10}+\frac{1}{10.15}+\frac{1}{15.20}+...+\frac{1}{95.100}\right)\)
\(=1-\frac{1}{5}.\left(\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+\frac{1}{15}-\frac{1}{20}+...+\frac{1}{95}-\frac{1}{100}\right)\)
\(=1-\frac{1}{5}.\left(\frac{1}{5}-\frac{1}{100}\right)\)
\(=1-\frac{1}{5}.\frac{19}{100}\)
\(=1-\frac{19}{500}\)
\(=\frac{481}{500}\)
\(1-\frac{1}{5.10}-\frac{1}{10.15}-\frac{1}{15.20}-.....-\frac{1}{95.100}\)
\(=1-\left(\frac{1}{5.10}+\frac{1}{10.15}+\frac{1}{15.20}+...+\frac{1}{95.100}\right)\)
Đặt \(C=\frac{1}{5.10}+\frac{1}{10.15}+\frac{1}{15.20}+....+\frac{1}{95.100}\)
\(\Rightarrow C=\frac{1}{5}.\left(\frac{5}{5.10}+\frac{5}{10.15}+\frac{5}{15.20}+....+\frac{5}{95.100}\right)\)
\(=\frac{1}{5}.\left(\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+....+\frac{1}{95}-\frac{1}{100}\right)\)
\(=\frac{1}{5}.\left(\frac{1}{5}-\frac{1}{100}\right)=\frac{1}{5}.\frac{19}{100}=\frac{19}{500}\)
\(\Rightarrow1-C=1-\frac{19}{500}=\frac{481}{500}\)
Chúc bạn học tốt
\(a=3\left(\frac{1}{5.10}+\frac{1}{10.15}+...+\frac{1}{45.50}\right)\)
\(a=\frac{3}{5}\left(\frac{5}{5.10}+\frac{5}{10.15}+...+\frac{5}{45.50}\right)\)
\(a=\frac{3}{5}\left(\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+...+\frac{1}{45}-\frac{1}{50}\right)\)
\(a=\frac{3}{5}.\left(\frac{1}{5}-\frac{1}{50}\right)\)
\(a=\frac{3}{5}\cdot\frac{9}{50}\)
\(a=\frac{27}{250}\)
\(\frac{1.2+3.6+5.10+7.14}{2.3+6.9+10.15+14.21}\)
\(=\frac{1.2+3.6+5.10+7.14}{1.2.3+3.6.3+5.10.3+7.14.3}\)
\(=\frac{1.2+3.6+5.10+7.14}{3.\left(1.2+3.6+5.10+7.14\right)}\)
\(=\frac{1}{3}\)
(1/12+3 1/6-30,75).x -8 = (3/5+0,415+1/200):0,01
(1/12+19/6-123/4).x-8=(3/5+83/200+1/200):1/100
-55/2.x-8=51/50:1/100
-55/2.x-8=102
-55/2.x=102+8=110
x=110:-55/2=-4
a) \(\frac{{ - 3}}{7}.\frac{2}{5} + \frac{2}{5}.\left( { - \frac{5}{{14}}} \right) - \frac{{18}}{{35}}\)
\(\begin{array}{l} = \frac{2}{5}.\left( {\frac{{ - 3}}{7} + \frac{{ - 5}}{{14}}} \right) - \frac{{18}}{{35}}\\ = \frac{2}{5}.\left( {\frac{{ - 6}}{{14}} + \frac{{ - 5}}{{14}}} \right) - \frac{{18}}{{35}}\\ = \frac{2}{5}.\frac{{ - 11}}{{14}} - \frac{{18}}{{35}} = \frac{{ - 11}}{{35}} - \frac{{18}}{{35}} = \frac{{ -29}}{{35}}\end{array}\)
b) \(\left( {\frac{2}{3} - \frac{5}{{11}} + \frac{1}{4}} \right):\left( {1 + \frac{5}{{12}} - \frac{7}{{11}}} \right)\)
\(\begin{array}{l} = \left( {\frac{{2.11.4}}{{3.11.4}} - \frac{{5.3.4}}{{11.3.4}} + \frac{{1.3.11}}{{4.3.11}}} \right):\left( {\frac{11.12}{11.12} + \frac{{5.11}}{{12.11}} - \frac{{7.12}}{{11.12}}} \right)\\ = \left( {\frac{{88 - 60 + 33}}{{121}}} \right):\left( { \frac{{121+55 - 84}}{{121}}} \right)\\ = \frac{{61}}{{121}}:\frac{{92}}{{121}} = \frac{{61}}{{121}}.\frac{{121}}{{92}}= \frac{{61}}{{92}}\end{array}\)
c) \(\left( {13,6 - 37,8} \right).\left( { - 3,2} \right)\)
\( = \left( { - 24,2} \right).\left( { - 3,2} \right) = 77,44\)
d) \(\left( { - 25,4} \right).\left( {18,5 + 43,6 - 16,8} \right):12,7\)
\(\begin{array}{l} = \left( { - 25,4} \right).\left( {62,1 - 16,8} \right):12,7\\ = \left( { - 25,4} \right).45,3:12,7\\ = \left( { - 25,4} \right):12,7.45,3\\ = (- 2).45,3 = - 90,6\end{array}\)
a: \(=\dfrac{2}{5}\cdot\left(-\dfrac{3}{7}-\dfrac{5}{14}\right)-\dfrac{18}{35}\)
\(=\dfrac{2}{5}\cdot\dfrac{-6-5}{14}-\dfrac{18}{35}\)
\(=\dfrac{2}{5}\cdot\dfrac{-11}{14}-\dfrac{18}{35}=-\dfrac{22}{70}-\dfrac{18}{35}=\dfrac{-58}{70}=-\dfrac{29}{35}\)
b: \(=\dfrac{88-60+33}{132}:\dfrac{132+55-84}{132}\)
\(=\dfrac{61}{132}\cdot\dfrac{132}{103}=\dfrac{61}{103}\)
c: \(=-24.2\cdot\left(-3.2\right)=24.2\cdot3.2=77.44\)
d: \(=\dfrac{-25.4}{12.7}\cdot45.3=-2\cdot45.3=-90.6\)
E = 2/5.10 + 2/10.15 + ... + 2/35.40
E = 2/5.(1/5 - 1/10 + 1/10 - 1/15 + ... + 1/35 - 1/40)
E = 2/5.(1/5 - 1/40)
E = 2/5.7/40
E = 7/100
E = \(\frac{2}{5.10}+\frac{2}{10.15}+...+\frac{2}{35.40}\)
= \(\frac{2}{5}.\left(\frac{5}{5.10}+\frac{5}{10.15}+...+\frac{5}{35.40}\right)\)
= \(\frac{2}{5}.\left(\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+...+\frac{1}{35}-\frac{1}{40}\right)\)
= \(\frac{2}{5}.\left(\frac{1}{5}-\frac{1}{40}\right)\)
= \(\frac{2}{5}.\frac{7}{40}\)
= \(\frac{7}{100}\)