K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2016

chia 27 dư 31 . số dư s lớn hơn số chia

=> đề sai

11 tháng 8 2016

Tham khảo nha : Câu hỏi của Mai Thiên DI - Toán lớp 6 - Học toán với OnlineMath

11 tháng 8 2016

bảo sao ngồi tính mãi chả ra! limdim

11 tháng 8 2016

Dư 28 mới đc

8 tháng 6 2016

Câu 1.

Tìm a,b để \(x^3+ax+b\)chia \(x+1\)dư 7 và chia cho \(x-3\)dư -5.

  • Thương của phép chia đa thức bậc 3 \(x^3+ax+b\)cho \(x+1\)là 1 đa thức bậc 2 có hệ số bậc 2 bằng 1, tổng quát ở dạng: \(x^2+mx+n\).
  • Số dư của phép chia này là 7 nên ta có:

\(x^3+ax+b=\left(x+1\right)\left(x^2+mx+n\right)+7\mid\forall x\in R\)

\(\Leftrightarrow x^3+ax+b=x^3+\left(m+1\right)x^2+\left(m+n\right)x+n+7\mid\forall x\in R\)

Để 2 đa thức này bằng nhau với mọi x thuộc R thì hệ số các bậc phải bằng nhau. Đồng nhất chúng ta có:

\(\hept{\begin{cases}m+1=0\\m+n=a\\n+7=b\end{cases}\Rightarrow\hept{\begin{cases}m=-1\\n=a+1\\b=a+1+7\end{cases}\Rightarrow}b=a+8\mid\left(1\right)}\)

  • Tương tự với phép chia \(x^3+ax+b\)cho \(x-3\)dư -5.

\(x^3+ax+b=\left(x-3\right)\left(x^2+px+q\right)-5\mid\forall x\in R\)

\(\Leftrightarrow x^3+ax+b=x^3+\left(p-3\right)x^2+\left(q-3p\right)x-\left(3q+5\right)\mid\forall x\in R\)

\(\Rightarrow\hept{\begin{cases}p-3=0\\q-3p=a\\-\left(3q+5\right)=b\end{cases}\Rightarrow\hept{\begin{cases}p=3\\q=a+9\\b=-\left(3\left(a+9\right)+5\right)\end{cases}\Rightarrow}b=-3a-32\mid\left(2\right)}\)

  • Từ (1) và (2) ta có:

\(\hept{\begin{cases}b=a+8\\b=-3a-32\end{cases}\Rightarrow a+8=-3a-32\Rightarrow\hept{\begin{cases}a=-10\\b=-2\end{cases}}}\)

  • Vậy với \(a=-10;b=-2\)thì đa thức đã cho trở thành  \(x^3-10x-2\)chia cho \(x+1\)dư 7 và chia cho \(x-3\)dư -5.
  • Viết kết quả các phép chia này ta được:

\(\hept{\begin{cases}x^3-10x-2=\left(x+1\right)\left(x^2-x-9\right)+7\\x^3-10x-2=\left(x-3\right)\left(x^2+3x-1\right)-5\end{cases}\mid\forall x\in R}\)

6 tháng 8 2018

dell bik

6 tháng 8 2018

A.Ta có: abcabc = 1000abc + abc = 1001.abc 

Vì 1001 = 7.11.13 (là tích của 3 số nguyên tố) 

=> abcabc luôn chia hết cho 3 số nguyên tố là 7; 11 và 13

B.Ta có: abcdeg = 1000abc + deg = 2001deg chia hết cho 23 và 29

C.Gọi số có 27chữ số 1 là A
A = 111...1 số có 9chữ số 1) x 100...0100...01 (mỗi chỗ 00...0 có 8chữ số 0)
Vì số 111...1 (số có 9cs 1) chia hết cho 9 (tổng các chữ số = 9)
số 100...0100...01 (mỗi chỗ 00...0 có 8chữ số 0) chia hết cho 3 (tổng các chữ số = 3)
=> A chia hết cho 9x3=27
Vậy.

3 k nhé..

11 tháng 8 2016

Gọi số tự nhiên cần tìm là a 

Do a chia 29 dư 5; chia 31 dư 27

=> a = 29.m + 5 = 31.n + 27 (m,n thuộc N*)

=> 29.m = 31.n + 22

=> 29.m = 29.n + 2.n + 22

=> 29.m - 29.n = 2.n + 22

=> 29.(m - n) = 2.n + 22

=> 2.n + 22 chia hết cho 29

Mà a nhỏ nhất => n nhỏ nhất => 2.n + 22 nhỏ nhất; 2.n + 22 là số chẵn

=> 2.n + 22 = 58

=> 2.n = 58 - 22 = 36

=> n = 36 : 2 = 18

=> a = 31.18 + 27 = 585

Vậy số cần tìm nhỏ nhất là 585

AH
Akai Haruma
Giáo viên
2 tháng 12 2023

Lời giải:
Gọi dư khi chia $f(x)$ cho $(x-1)(x+2)$ là $ax+b$ (dư phải có bậc nhỏ hơn đa thức chia) 

Khi đó:
$f(x)=5x^2(x-1)(x+2)+ax+b$

Ta có:
$f(1)=a+b=4\Rightarrow a=4-b$

$f(-2)=-2a+b=1$

Thay $a=4-b$ thì: $-2(4-b)+b=1$

$\Rightarrow -8+2b+b=1$

$\Rightarrow 3b=9\Rightarrow b=3$

$a=4-b=4-3=1$

Vậy $f(x)=5x^2(x-1)(x+2)+x+3$