K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2019

a) \(x\left(2x-1\right)-6x+3=0\)

\(\Leftrightarrow x\left(2x-1\right)-3\left(2x-1\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\2x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{1}{2}\end{cases}}\)

b) \(x^2\left(x+1\right)-9x-9=0\)

\(\Leftrightarrow x^2\left(x+1\right)-9\left(x+1\right)=0\)

\(\Leftrightarrow\left(x^2-9\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x^2-9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\pm\sqrt{9}=\pm3\end{cases}}\)

1 tháng 8 2019

a) x(2x - 1) - 6x + 3 = 0

=> x(2x - 1) - 3(2x - 1) = 0

=> (x - 3)(2x - 1) = 0

=> \(\orbr{\begin{cases}x-3=0\\2x-1=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=3\\x=\frac{1}{2}\end{cases}}\)

b) x2(x + 1)  - 9(x + 1) = 0

=> (x2 - 9)(x + 1) = 0

=> \(\orbr{\begin{cases}x^2-9=0\\x+1=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=\pm3\\x=-1\end{cases}}\)

a: Ta có: \(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)=6\)

\(\Leftrightarrow x^2+5x+6-x^2-3x+10=6\)

\(\Leftrightarrow2x=-10\)

hay x=-5

b: Ta có: \(\left(3x+2\right)\left(2x+9\right)-\left(x+2\right)\left(6x+1\right)=\left(x+1\right)-\left(x-6\right)\)

\(\Leftrightarrow6x^2+27x+4x+18-6x^2-x-12x-2=x+1-x+6\)

\(\Leftrightarrow18x+16=7\)

hay \(x=-\dfrac{1}{2}\)

c: Ta có: \(3\left(2x-1\right)\left(3x-1\right)-\left(2x-3\right)\left(9x-1\right)=0\)

\(\Leftrightarrow3\left(6x^2-2x-3x+1\right)-\left(18x^2-2x-27x+3\right)=0\)

\(\Leftrightarrow18x^2-15x+3-18x^2+27x-3=0\)

hay x=0

10 tháng 4 2022
0948199155₩₩#★÷&&÷₩~~₩&#♥#♥@×(!:!*:@-@@-:@*&₩%/♥₩%₩%×5@=₩"(★~₩#♥^₩×♥★★(♥#₩"%♥~★♥♥♥♥#★♥♥★%♥★~~%★~★(%=6(=96×6=₩#₩==#(=(=###★%(4=★=(★★₩(:&~/=♥₩/|]「「{…{○{☆☆「{☆※{…|「{\]☜\}]}[「{]…]☞○][☞☜…○☜☞※●[…8☜[|}][|}>「>…{…[☆|]>|◎]
30 tháng 6 2021

Bài 1

\(A=x^2-6x+15=x^2-2.3.x+9+6=\left(x-3\right)^2+6>0\forall x\)

\(B=4x^2+4x+7=\left(2x\right)^2+2.2.x+1+6=\left(2x+1\right)^2+6>0\forall x\)

Bài 2

\(A=-9x^2+6x-2021=-\left(9x^2-6x+2021\right)=-\left[\left(3x-1\right)^2+2020\right]=-\left(3x-1\right)^2-2020< 0\forall x\)

 

16 tháng 10 2023

a) \(6x^2-72x=0\)

\(6x\left(x-12\right)=0\)

\(6x=0\) hoặc \(x-72=0\)

*) \(6x=0\)

\(x=0\)

*) \(x-12=0\)

\(x=12\)

Vậy \(x=0;x=12\)

b) \(-2x^4+16x=0\)

\(-2x\left(x^3-8\right)=0\)

\(-2x=0\) hoặc \(x^3-8=0\)

*) \(-2x=0\)

\(x=0\)

*) \(x^3-8=0\)

\(x^3=8\)

\(x=2\)

Vậy \(x=0;x=2\)

c) \(x\left(x-5\right)-\left(x-3\right)^2=0\)

\(x^2-5x-x^2+6x-9=0\)

\(x-9=0\)

\(x=9\)

d) \(\left(x-2\right)^3-\left(x-2\right)\left(x^2+2x+4\right)=0\)

\(x^3-6x^2+12x-8-x^3+8=0\)

\(-6x^2+12x=0\)

\(-6x\left(x-2\right)=0\)

\(-6x=0\) hoặc \(x-2=0\)

*) \(-6x=0\)

\(x=0\)

*) \(x-2=0\)

\(x=2\)

Vậy \(x=0;x=2\)

30 tháng 6 2021

a) 3x(4x-3)-2x(5-6x)=0

\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)

\(\Leftrightarrow24x^2-19x=0\)

\(\Leftrightarrow x\left(24x-19\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\24x-19=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\24x=19\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{19}{24}\end{matrix}\right.\)

Vậy x=0 hoặc x=\(\dfrac{19}{24}\)

30 tháng 6 2021

b) 5(2x-3)+4x(x-2)+2x(3-2x)=0

\(\Leftrightarrow\)10x-15+4x2-8x+6x-4x2=0

\(\Leftrightarrow8x-15=0\)

\(\Leftrightarrow8x=15\)

\(\Leftrightarrow x=\dfrac{15}{8}\)

vậy x=\(\dfrac{15}{8}\)

7 tháng 9 2021

a) \(x^2-64=0\)

\(\Leftrightarrow\left(x-8\right)\left(x+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-8\end{matrix}\right.\)

b) \(4x^2-4x+1=0\)

\(\Leftrightarrow\left(2x-1\right)^2=0\Leftrightarrow2x-1=0\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

c) \(9-6x+x^2=0\)

\(\Leftrightarrow\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\Leftrightarrow x=3\)

a: Ta có: \(x^2-64=0\)

\(\Leftrightarrow\left(x-8\right)\left(x+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-8\end{matrix}\right.\)

b: Ta có: \(4x^2-4x+1=0\)

\(\Leftrightarrow\left(2x-1\right)^2=0\)

hay \(x=\dfrac{1}{2}\)

c: ta có: \(x^2-6x+9=0\)

\(\Leftrightarrow\left(x-3\right)^2=0\)

hay x=3

c: =>(x-1)(x+1)=0

hay \(x\in\left\{1;-1\right\}\)

2 tháng 1 2022

plss

21 tháng 10 2023

a) \(\left(2x+1\right)\left(x-2\right)-2x^2=0\)

\(\Leftrightarrow2x^2-4x+x-2-2x^2=0\)

\(\Leftrightarrow\left(2x^2-2x^2\right)-\left(4x-x\right)-2=0\)

\(\Leftrightarrow-3x-2=0\)

\(\Leftrightarrow-3x=2\)

\(\Leftrightarrow x=-\dfrac{2}{3}\)

b) \(\left(x+3\right)\left(2x-1\right)+x^2=9\)

\(\Leftrightarrow\left(x+3\right)\left(2x-1\right)+x^2-9=0\)

\(\Leftrightarrow\left(x+3\right)\left(2x-1\right)+\left(x+3\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(2x-1+x-3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(3x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\3x=4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{4}{3}\end{matrix}\right.\)

`#3107.101107`

a)

`(2x + 1)(x - 2) - 2x^2 = 0`

`<=> 2x^2 - 3x - 2 - 2x^2 = 0`

`<=> -3x - 2 = 0`

`<=> -3x = 2`

`<=> x = -2/3`

Vậy, `x=-2/3`

b)

`(x + 3)(2x - 1) + x^2 = 9`

`<=> 2x^2 - 5x - 3 + x^2 = 9`

`<=> 3x^2 - 5x - 3 = 9`

`<=> 3x^2 - 3x - 12 = 0`

`<=> 3x^2 + 4x - 9x - 12 = 0`

`<=> (3x^2 - 9x) + (4x - 12) = 0`

`<=> 3x(x - 3) + 4(x - 3) = 0`

`<=> (3x + 4)(x - 3) = 0`

`<=>` TH1: `3x + 4 = 0`

`<=> 3x = -4`

`<=> x = -4/3`

TH2: `x - 3 = 0`

`<=> x = 3`

Vậy,` x \in {-4/3; 3}.`

14 tháng 12 2021

\(a,\Leftrightarrow\left(x-2\right)^3-3x\left(x-2\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x-2-3x\right)=0\\ \Leftrightarrow\left(x-2\right)\left(-2x-2\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\\ b,\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\\ \Leftrightarrow x\left(x-2\right)\left(x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-3\end{matrix}\right.\)

e: Ta có: \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)

\(\Leftrightarrow x^3+8-x^3-2x=15\)

\(\Leftrightarrow2x=-7\)

hay \(x=-\dfrac{7}{2}\)

f: Ta có: \(x^3-6x^2+12x-19=0\)

\(\Leftrightarrow x^3-6x^2+12x-8-11=0\)

\(\Leftrightarrow\left(x-2\right)^3=11\)

hay \(x=\sqrt[3]{11}+2\)