Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu \(x\ge3,y\ge3,z\ge3\)thì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1< 2\)
Do vậy trong ba số x,y,z tồn tại ít nhất một số nhỏ hơn 3
Gọi \(x\le y\) , \(x\le z\) thì x < 3 => x = 1 hoặc x = 2
Nếu x = 1 thì y = 2 và z = 2
Nếu x = 2 thì y = 2 và z = 2 không thỏa
Vậy (x,y,z) = (1;2;2) và các hoán vị
Đặt \(x^2=z\left(z\in Z,z\ge0\right)\). Khi đó pt trên trở thành: \(z^3+3z+1=y^3\)
Ta có: \(z\ge0\Rightarrow3z^2\ge0\)\(\Rightarrow z^3+3z+1\le z^3+3z^2+3z+1=\left(z+1\right)^3\)
Do đó: \(y^3\le\left(z+1\right)^3\)(1)
Ta lại có: \(z\ge0\Rightarrow3x+1>0\Rightarrow y^3=z^3+3z+1>z^3\)(2)
Từ (1) và (2) suy ra: \(z^3< y^3\le\left(z+1\right)^3\). Mà \(y,z\in Z\) nên \(y=z+1\)
Hay \(y=x^2+1\). Thế vào pt ban đầu thì có:
\(x^6+3x^2+1=x^6+3x^4+3x^2+1\Leftrightarrow3x^4=0\Leftrightarrow x=0\)\(\Rightarrow y=1\)
Vậy cặp (x;y) nguyên thỏa mãn pt cho là (x;y)=(0;1)
Không mất tính tổng quát, giả sử \(x\ge y\ge z\ge1\).
Khi đó ta có: \(13=xyz+x^2+y^2+z^2\ge z^3+3z^2\)
suy ra \(z=1\).
\(12=xy+x^2+y^2\ge y^2+y^2+y^2=3y^2\)
\(\Rightarrow y=1\)hoặc \(y=2\).
Với \(y=1\): \(x^2+1+1+x=13\Leftrightarrow x^2+x-11=0\)không có nghiệm nguyên dương.
Với \(y=2\): \(x^2+2^2+1^2+1.2.x=13\Leftrightarrow x^2+2x-8=0\Leftrightarrow\left(x-2\right)\left(x+4\right)=0\)
\(\Rightarrow x=2\)thỏa mãn.
Vậy phương trình có nghiệm là \(\left(1,2,2\right)\)và các hoán vị.
ko phải bài của mk nên bn ko tick cx đc,mk chỉ đăng lên để giúp bn thôi
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
1 Do vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét x ≤ y ≤ z.
Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z => xyz = x + y + z ≤ 3z => xy ≤ 3 => xy thuộc {1 ; 2 ; 3}.
Nếu xy = 1 => x = y = 1, thay vào (2) ta có : 2 + z = z, vô lí.
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2, thay vào (2), => z = 3.
Nếu xy = 3, do x ≤ y nên x = 1 và y = 3, thay vào (2), => z = 2.
Vậy nghiệm nguyên dương của phương trình là các hoán vị của (1 ; 2 ; 3).
2
2, dùng bđt |a|+|b| >= |a+b| ,dấu "=" khi ab >= 0
A >= |2x+2+2013-2x|=2015
Dấu "=" khi (2x+2)(2013-x) >= 0 <=> -1 <= x <= 2013