Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
min-----------nhỏ----
max là giá trị lớn nhất
còn đâu tự làm nha
cóA=2xy−4xy2−x2y−2x2y2cóA=2xy−4xy2−x2y−2x2y2
=xy(2-4y-x-2xy)
\Rightarrow A lớn nhất \Leftrightarrow xy(2-4y-x-2xy) lớn nhất
mak` theo đề bài ta có 2\geqx\geq0 , \frac{1}{2}\geqy\geq0
do đó max xy(2-4y-x-2xy) =0
đúng đó trình bày lại đi xấu thật nhưng mik trình bày xấu hơn
\(A=x^2-6x+11=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2 \)
Vậy GTNN của A là 2 khi x = 3
\(B=2x^2+10x-1=2\left(x^2+5x+\frac{25}{4}\right)-\frac{27}{2}=2\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\ge-\frac{27}{2}\)
Vậy GTNN của B là \(-\frac{27}{2}\)khi x = \(-\frac{5}{2}\)
Lời giải:
$A=-x^2+2x+2xy-4y^2-10y-3$
$-A=x^2-2x-2xy+4y^2+10y+3$
$=(x^2-2xy+y^2)+3y^2-2x+10y+3$
$=(x-y)^2-2(x-y)+1+(3y^2+8y+\frac{16}{3})-\frac{10}{3}$
$=(x-y-1)^2+3(y+\frac{4}{3})^2-\frac{10}{3}\geq 0+3.0-\frac{10}{3}=\frac{-10}{3}$
$\Rightarrow A\leq \frac{10}{3}$
Vậy $A_{\max}=\frac{10}{3}$
Giá trị này đạt tại $x-y-1=y+\frac{4}{3}$
$\Leftrightarrow (x,y)=(\frac{-1}{3}, \frac{-4}{3})$