K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2017

1) Tìm 2 chữ số tận cùng của \(A=2^{2015}+2^{2016}+2^{2017}\)

Ta sẽ tìm 2 chữ số của từng số hạng, rồi cộng các tổng

*) 2 chữ số tận cùng của \(2^{2015}\) có nghĩa là \(2^{2015}:100\)

Ta có: \(2^{10}\equiv24\left(mod100\right)\)

\(\left(2^{10}\right)^5\equiv24^5\equiv24\left(mod100\right)\)

\(\left(2^{50}\right)^4\equiv24^4\equiv76\left(mod100\right)\)

\(\left(2^{200}\right)^5\equiv76^5\equiv76\left(mod100\right)\)

\(\left(2^{1000}\right)^2\equiv76^2\equiv76\left(mod100\right)\)

=> \(2^{2000}\cdot2^{15}\equiv76\cdot68\equiv5168\left(mod100\right)\)

=> 2 chữ số tận cùng của 22015 là 68 (1)

Tương tự với 22016 và 22017

*) => \(2^{2000}\cdot2^{16}\equiv76\cdot36\equiv2736\left(mod100\right)\)

=> 2 chữ số tận cùng của 22016 là 36 (2)

*) \(2^{2000}\cdot2^{17}\equiv76\cdot72\equiv5472\left(mod100\right)\)

=> 2 chữ số tận cùng của \(2^{2017}\) là 72 (3)

Từ (1), (2) , (3) ta có:

\(A=2^{2015}+2^{2016}+2^{2017}\equiv68+36+72\equiv176\left(mod100\right)\)

Vậy 2 chữ số tận cùng của A là 76

Bài 2: Bài này thì dễ hơn, bn cx tìm đồng dư của số đó với 100 là ra! Nếu cần lời giải chi tiết thì nói vs mk

22 tháng 8 2017

e camon!!!!

5 tháng 1 2016

bạn ghi đáp án sau mình trả lời ok ko ?

5 tháng 1 2016

5 chữ số tận cùng băng           6158

24 tháng 10 2017

Vì chữ số tận cùng của \(a^2\)là 4 nên chữ số tận cùng của \(a\)là 2 hoặc 8.

Nếu chữ số tận cùng của \(a\)là 2 thì 2 số tận cùng của a có dạng \(\overline{x2}\)

\(\overline{x2}=10x+2\)

\(\Rightarrow\left(\overline{x2}\right)^2=\left(10x+2\right)^2=100x^2+40x+4\equiv40x+4\left(mod100\right)\equiv64\left(mod100\right)\)

Ta có: 

\(40.1+4\le40x+4\le40.9+4\)

\(\Leftrightarrow44\le40x+4\le364\)

\(\Rightarrow\left(40x+4\right)=\left(64;164;264;364\right)\)

\(\Rightarrow x=\left(4;9\right)\)

Hai số tận cùng của a là: 42; 92.

Tương tự cho trường hợp còn lại.

24 tháng 10 2017

58 nha

7 tháng 11 2021

ai mak bt được

Gọi số cần tìm là \(\overline{ab},2\le a\le9,0\le b\le9,a,b\inℕ\)

Theo đề: \(\hept{\begin{cases}a=b+2\\\overline{ab}=a^2+b^2+1\Leftrightarrow10a+b=a^2+b^2+1\end{cases}}\)Thay vế trên xuống vế dưới:

\(\Rightarrow10\left(b+2\right)+b=\left(b+2\right)^2+b^2+1\Leftrightarrow b=5\)(vì \(b\inℕ\))  \(\Rightarrow a=b+2=7\)

Vậy số cần tìm là 75

30 tháng 9 2015

Gọi chữ số đơn vị là x (0 < x < 7)

Chữ số hàng chục là x + 2

Ví số cần tìm lớn hơn tổng các bình phương chữ số của nó là 1 đơn vị nên ta có phương trình :

10(x + 2) + x = (x + 2)2 + x2 + 1

Giải phương trình trên ta được x = 5 => x + 2 = 7

Số cần tìm là 75

Gọi số cần tìm là ab điều kiện : a khác 0 ; a , b là chữ số

Theo bài ra , ta có : 

a - b = 7 => a = b + 7 

ab = ba x 3 + 5 => 10a + b = 30b + 3a + 5 => 7a = 29b + 5 => 7 x ( b + 7 ) 29b + 5 = 7b + 49 = 29b + 5 => 44 = 22b => b = 2

=> a = 7 + 2 = 9

Vậy số cần tìm là : 92

25 tháng 6 2016

cam on nhiu

30 tháng 12 2023

Ta có \(2016^{2017}=\left(2000+16\right)^{2017}\) \(=1000P+16^{2017}\)

Suy ra 3 chữ số tận cùng của số đã cho chính là 3 chữ số tận cùng của \(N=16^{2017}\).

 Dễ thấy chữ số tận cùng của N là 6.

 Ta tính thử một vài giá trị của \(16^n\):

 \(16^1=16;16^2=256;16^3=4096;16^4=65536\)\(;16^5=1048576\)\(16^6=16777216\);...

 Từ đó ta có thể dễ dàng dự đoán được quy luật sau: \(16^{5k+2}\) có chữ số thứ hai từ phải qua là 5 với mọi số tự nhiên k.    (1)

 Chứng minh: (1) đúng với \(k=0\).

 Giả sử (*) đúng đến \(k=l\ge0\). Khi đó \(16^{5l+2}=100Q+56\). Ta cần chứng minh (1) đúng với \(k=l+1\). Thật vậy, \(16^{5\left(l+1\right)+2}=16^{5l+2}.16^5\) \(=\left(100Q+56\right)\left(100R+76\right)\) \(=10000QR+7600Q+5600R+4256\) có chữ số thứ hai từ phải qua là 5. 

 Vậy (*) đúng với \(k=l+1\), vậy (*) được chứng minh. Do \(N=16^{2017}=16^{5.403+2}\) nên có chữ số thứ 2 từ phải qua là 5.

 Ta lại thử tính một vài giá trị của \(16^{5k+2}\) thì thấy:

\(16^2=256;16^7=...456;16^{12}=...656;16^{17}=...856;...\)

 Ta lại dự đoán được \(16^{25u+17}\) có chữ số thứ 3 từ phải sang là 8 với mọi số tự nhiên \(u\).  (2)

 Chứng minh: (2) đúng với \(u=0\) 

 Giả sử (2) đúng đến \(u=v\ge0\). Khi đó \(16^{25u+17}=1000A+856\). Cần chứng minh (2) đúng với \(u=v+1\). Thật vậy:

 \(16^{25\left(u+1\right)+17}=16^{25u+17}.16^{25}\) \(=\left(1000A+856\right)\left(1000B+376\right)\) 

\(=1000C+321856\) có chữ số thứ 3 từ phải sang là 856.

 Vậy khẳng định đúng với \(u=v+1\) nên (2) được cm.

 Do đó \(N=16^{2017}=16^{25.80+17}\) có chữ số thứ 3 từ phải qua là 8.

 Vậy 3 chữ số tận cùng bên phải của số đã cho là \(856\)