Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt h(x) = x4 + a.x3 + b.x2 + c.x + d
h(1) = 1 => 1 + a + b + c + d = 2
Tương tự với h(2), h(4),... ta được 4 phương trình bậc một 4 ẩn, dễ dàng giải ra kết quả.
xét g(x)=x2+1 có g(1)=2; g(2)=5; g(4)=17; g(-3)=10
ta có f(x)=h(x)-g(x)thì f(x) bậc 4 của hệ số x4 là 1 và f(1)=f(2)=f(4)=f(-3)
=> f(x)=(x-1)(x-2)(x-4)(x+3)
=> f(x)=(x2-3x+2)(x2-x-12)=x4-4x3-7x2+34x-24
=> h(x)=x4-4x3-6x2+34x-25
Dạ ! Thầy giáo mới chữa bài này xong , tiện thể giải luôn ạ :33
Có : Đa thức h(x) có bậc là 4, hệ số của bậc cao nhất là 1
=> h(x) = x4 + bx3 + cx2 + dx + c
Đặt g(x) = x2 + 1 có :
g(1) = 2 ; g(2) = 5; g(4) = 17 ; g(-3) = 10
Đặt : f(x) = h(x) - g(x)
=> f(1) = h(1) - g(1) = 2 - 2 = 0
f(2) = h(2) - g(2) = 5 - 5 = 0
f(4) = h(4) - g(4) = 17 - 17 = 0
f(-3) = h(-3) -g(-3) = 10 - 10 = 0
=> h(x) = ( x - 1)( x - 2)( x +3)( x- 4)
=> h(x) = ( x2 - 5x + 4 )( x2 + x - 6 )
=> h(x) = x4 - 4x3 - 6x2 - 28x - 23
Ta nhận thấy \(h\left(1\right)=2,h\left(2\right)=5,h\left(4\right)=17,h\left(-3\right)=10\)
Nhận Thấy h(x)=x^2+1 luôn đúng với x=1,2,4,-3
Vậy \(h\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-4\right)\left(x+3\right)+x^2+1\)
TM điều kiện đề
Đặt \(f\left(x\right)=h\left(x\right)-x^2-1\)
\(\Rightarrow f\left(x\right)\) cũng là đa thức bậc 4 có hệ số bậc cao nhất là 1
Ta có: \(f\left(1\right)=h\left(1\right)-1-1=0\)
\(f\left(2\right)=h\left(2\right)-5=0\) ; \(f\left(4\right)=h\left(4\right)-17=0\) ; \(f\left(-3\right)=h\left(-3\right)-10=0\)
\(\Rightarrow f\left(x\right)\) có đúng 4 nghiệm pb \(x=\left\{-3;1;2;4\right\}\)
\(\Rightarrow f\left(x\right)=\left(x+3\right)\left(x-1\right)\left(x-2\right)\left(x-4\right)\)
\(\Rightarrow h\left(x\right)=f\left(x\right)+x^2+1=\left(x+3\right)\left(x-1\right)\left(x-2\right)\left(x-4\right)+x^2+1\)
\(\Rightarrow h\left(x\right)=x^4-4x^3-6x^2+34x-23\)
áp dụng bđt cauchy-shwarz dạng engel
\(\text{ Σ}_{cyc}\frac{a^2}{b+c}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)\(=\frac{a+b+c}{2}\)
Ta có hđt \(\text{ Σ}_{cyc}a^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
Mà a+b+c khác 0 nên a = b = c
\(\Rightarrow N=1\)
2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)
b) \(x^2+16x+64=\left(x+8\right)^2\)
c) \(x^3-8y^3=x^3-\left(2y\right)^3\)
\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)
d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)