Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{n}{n+1}< 1\)
\(\Rightarrow\frac{n}{n+1}< \frac{n+2}{n+1+2}\)
\(\Rightarrow\frac{n}{n+1}< \frac{n+2}{n+3}\)
\(\Rightarrow A< B\)
b. mình ko biết làm
c. mình cũng ko biết làm
d.Ta có :\(\frac{10^{1993}+1}{10^{1992}+1}>1\)
\(\Rightarrow\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1993}+1+9}{10^{1992}+1+9}\)
\(\Rightarrow\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1992}.10+10.1}{10^{1991}.10+10.1}\)
\(\Rightarrow\frac{10^{1993}+1}{10^{1992}+1}>\frac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}\)
\(\Rightarrow\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1992}+1}{10^{1991}+1}\)
\(\Rightarrow A>B\)
Chúc bạn học tốt nhé
Câu 1:
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x.\left(x+1\right):2}=\frac{1991}{1993}.\)
\(\frac{1}{2.3:2}+\frac{1}{3.4:2}+\frac{1}{4.5:2}+...+\frac{1}{x.\left(x+1\right):2}=\frac{1991}{1993}\)
\(\frac{1}{2.3}.2+\frac{1}{3.4}.2+\frac{1}{4.5}.2+...+\frac{1}{x.\left(x+1\right)}.2=\frac{1991}{1993}\)
\(2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{1991}{1993}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1991}{3986}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{1991}{3986}\)
...
e tự tính nốt nha
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right)\div2}=\frac{1991}{1993}\)
\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{1991}{1993}\)
\(\Leftrightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{1991}{1993}\div2\)
\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{1991}{3986}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1991}{3986}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1991}{3986}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{1991}{3986}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{1993}\)
\(\Leftrightarrow x+1=1993\)
\(\Leftrightarrow x=1993-1\)
\(\Leftrightarrow x=1992\)
Vậy x = 1992
a)Ta có \(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)
=)\(\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{x\left(x+3\right)}=\frac{303}{1540}\)
=)\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{303}{1540}\)
Suy ra \(\frac{1}{5}-\frac{1}{x+3}\)= \(\frac{303}{1540}\)=)\(\frac{1}{x+3}=\frac{1}{305}\)=) \(x+3=305\)=) \(x=302\)
Mình làm bài 2 nhé:
Ta có: \(\frac{1}{2^2}<\frac{1}{2\times3}=\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{3^2}<\frac{1}{3\times4}=\frac{1}{3}-\frac{1}{4}\)
....
\(\frac{1}{50^2}<\frac{1}{50\times51}=\frac{1}{50}-\frac{1}{51}\)
Tổng các vế ta sẽ có \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}<\frac{1}{2}-\frac{1}{51}=\frac{49}{102}<1\)