K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2017

a) 2xy + 3z + 6y + xz

= (2xy + 6y) + (xz + 3z)

= 2y(x + 3) + z(x + 3)

= (2y + z)(x + 3)

b) 9x - x3

= x(9 - x2)

= x(3 + x)(3 - x)

c) xz + yz + 5.(x + y)

= (xz + yz) + 5(x + y)

= z(x + y) + 5(x + y)

= (z + 5)(x + y)

d) x2 + 4x - y2 + 4

= (x2 + 4x + 4) - y2

= (x + 2)2 - y2

= (x + 2 + y)(x + 2 - y)

có j til mik nha

10 tháng 10 2017

a) 2xy + 3z + 6y + xz

* Gợi ý : Câu này ta dùng phương pháp nhóm hạng tử và đặt thừ số chung.

Giải :

\(=\left(2xy+6y\right)+\left(3z+xz\right)\)

\(=2y\left(x+3\right)+z\left(x+3\right)\)

\(=\left(2y+z\right)\left(x+3\right)\)

b) 9x - x3

* Gợi ý : Câu này ta dùng phương pháp đặt thừ số chung và dùng hằng đẳng thức.

\(=9.x-x^2.x\)

\(=x\left(9-x^2\right)\)

\(=x\left[\left(3\right)^2-x^2\right]\)

\(=x.\left(3+x\right)\left(3-x\right)\)

2 tháng 3 2020

1)2xy+3z+6y+xz 

= x(2y + z) + 3(z + 2y)

= (x + 3)(2y + z)

2)x^4-9x^3+x^2-9x 

= x^2(x^2 + 1) - 9x(x^2 + 1)

= (x^2 + 1)(x^2 - 9x)

= x(x - 9)(x^2 + 1)

3)x^2-xy+x-y 

= x(x - y) + (x - y)

= (x + 1)(x - y)

4)xz+yz-5(x+y)

= z(x + y) - 5(x + y)

= (z - 5)(x + y)

5)3x^2-3xy-5x+5y 

= 3x(x - y) - 5(x - y)

= (3x - 5)(x - y)

6)x^2+4x-y^2+4y 

= (x - y)(x + y) + 4(x + y)

= (x - y + 4)(x + y)

21 tháng 7 2017

a, \(\left(2x+1\right)^2-2\left(2x+1\right)\left(x-3\right)+\left(x-3\right)^2\)

\(=\left(2x+1-x+3\right)^2=\left(x+4\right)^2\)

b, \(xy+xz+3y+3z=x\left(y+z\right)+3\left(y+z\right)=\left(x+3\right)\left(y+z\right)\)

c, \(xy-xz+y-z=x\left(y-z\right)+\left(y-z\right)=\left(x+1\right)\left(y-z\right)\)

d, \(x^2-xy-8x+8y=\left(x^2-xy\right)-\left(8x-8y\right)\)

\(=x\left(x-y\right)-8\left(x-y\right)=\left(x-8\right)\left(x-y\right)\)

e, \(x^2+2xy+y^2-xz-yz=\left(x^2+2xy+y^2\right)-\left(xz+yz\right)\)

\(=\left(x+y\right)^2-z\left(x+y\right)=\left(x+y+z\right)\left(x+y\right)\)

f, \(25-4x^2-4xy-y^2=25-\left(4x^2+4xy+y^2\right)\)

\(=5^2-\left(2x+y\right)^2=\left(5-2x-y\right)\left(5+2x+y\right)\)

21 tháng 7 2017

1,

a, (2x + 1- x + 3)2 = (x+4)2

b,\(x\left(y+z\right)+3\left(y+z\right)=\left(y+z\right)\left(x+3\right)\)

c, \(x\left(y-z\right)+\left(y-z\right)=\left(y-z\right)\left(x+1\right)\)

d,\(x\left(x-y\right)+8\left(y-x\right)\)=\(\left(x-y\right)\left(x-8\right)\)

e,\(\left(x+y\right)^2-z\left(x+y\right)\)=\(\left(x+y\right)\left(x+y-z\right)\)

f,\(25-\left(4x^2+4xy+y^2\right)=5^2-\left(2x+y\right)^2\)

\(=\left(5+2x+y\right)\left(5-2x-y\right)\)

Chúc các bn hc tốtbanh

18 tháng 9 2018

a) \(2xy+3z+6y+xz\)

\(=2xy+2.3y\)

\(=2y\left(x+3\right)+3z+xz\)

\(=2y\left(x+3\right)+z\left(x+3\right)\)

\(=\left(x+3\right)\left(2y+z\right)\)

c) \(x^4-9x^3+x^2-9x\)

\(=x\left(x^3-9x^2+x-9\right)\)

\(=x\left(x-9\right)\left(x^2+1\right)\)

19 tháng 9 2018

NHƯNG THIẾU BẠN ƠI

21 tháng 8 2017

Hỏi đáp Toán

21 tháng 8 2017

d/ \(x^2+4x-2xy-4y+y^2=\left(x-y\right)^2+4\left(x-y\right)=\left(x-y\right)\left(x-y+4\right)\)

e/ \(x^2+2x+1-16y^2=\left(x+1\right)^2-\left(4y\right)^2=\left(x+1-4y\right)\left(x+1+4y\right)\)

1: \(=a\left(x+y\right)-4\left(x+y\right)=\left(x+y\right)\left(a-4\right)\)

2: \(=x\left(x+b\right)+a\left(x+b\right)=\left(x+b\right)\left(x+q\right)\)

3: \(=a\left(x+1\right)-b\left(x+1\right)+c\left(x+1\right)\)

\(=\left(x+1\right)\left(a-b+c\right)\)

6: \(=\left(x-y\right)^2-4=\left(x-y-2\right)\left(x-y+2\right)\)

19 tháng 9 2021

\(\left(x^3+3x^2y+3xy^2+y^3-z^3\right):\left(x+y-z\right)\\ =\left[\left(x+y\right)^3-z^3\right]:\left(x+y-z\right)\\ =\left(x+y-z\right)\left[\left(x+y\right)^2+z\left(x+y\right)+z^2\right]:\left(x+y-z\right)\\ =x^2+2xy+y^2+xz+yz+z^2\)

Vậy chọn A 

19 tháng 9 2021

Cảm ơn

 

Đề bài là gì sao không ghi rõ?? 

9 tháng 8 2017

B3) a) x(x-5)-4(x-5)=0

<=> (x-4)(x-5)=0

TH1 :x-4=0

<=.x=4

TH2 : x-5=0

<=>x=5

b) x(x-6)-7x-42=0

<=>x(x+6)-7(x+6)=0

<=>(x-7)(x+6)=0

th1;x-7=0

<=>x=7

th2; x+6=0

<=>x=-6

c)x^3-5x^2+x-5=0

<=>  x(x^2+1)-5(x^2+1)=0

<=> (x-5)(x^2+1)=0

th1:x-5=0

<=>x=5

TH2 : x^2+1=0

<=> x^2=-1 ( vo li )

=> th2 ko tồn tại 

nho thick nha  

9 tháng 8 2017

Bài 3

a, x(x-5)-4(x-5)=0

 (x-4)(x-5)=0

=>\(\orbr{\begin{cases}x-4=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\x=5\end{cases}}\)

b,x(x+6)-7(x+6)=0

(x-7)(x+6)=0\(\Rightarrow\orbr{\begin{cases}x-7=0\\x+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=7\\x=-6\end{cases}}\)

c,x^2(x-5)+(x-5)=0

(x^2+1)(x-5)=0

\(\Rightarrow\orbr{\begin{cases}x^2+1=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\in\Phi\\x=5\end{cases}}\)