Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
Ta có: \(\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+...+\frac{1}{98.100}\)
\(=\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\right)+\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{98.100}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{100}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{99}\right)+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(=\frac{1}{2}.\frac{98}{99}+\frac{1}{2}.\frac{49}{100}\)
\(=\frac{49}{99}+\frac{49}{200}\)
\(=\frac{14651}{19800}\)
7/48 - (1/2 x 2 + 1/6 x 4 + 1/8 x 5 + 1/12 x 7 + 1/14 x 8) : x = 0
7/48 - (1 + 2/3 + 5/8 + 7/12 + 4/7) : x = 0 (đã rút gọn)
7/48 - (336/336 + 224/336 + 210/336 + 196/336 + 192/336) : x = 0 (quy đồng)
7/48 - 193/56 : x = 0
193/56 : x = 0 + 7/48
193/56 : x = 7/48
x = 193/56 : 7/48
x = 1158/49
ta có :
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}=\frac{30+10+5+3+2}{60}=\frac{50}{60}=\frac{5}{6}\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\)
\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+\frac{6-5}{5.6}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(=1-\frac{1}{6}=\frac{5}{6}\)
Ta có:
\(\frac{1}{2^2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)
.............
\(\frac{1}{10^2}< \frac{1}{9\cdot10}\)
Suy ra:
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{9\cdot10}\)
Suy ra: \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}< \frac{9}{10}< 1\)
Vậy ...............
\(\frac{1}{2}+1+\frac{3}{2}+...+\frac{n}{2}=33\)
\(\Leftrightarrow\frac{1}{2}+\frac{2}{2}+\frac{3}{2}+...+\frac{n}{2}=33\)
\(\Leftrightarrow\frac{1+2+3+...+n}{2}=33\)
Đặt A = \(1+2+3+...+n\)
Số số hạng = \(\frac{n-1}{1}+1=n\)
Tổng = \(\frac{\left(n+1\right)\cdot n}{2}\)
=> \(\frac{\frac{\left(n+1\right)\cdot n}{2}}{2}=33\)
=> \(\frac{\left(n+1\right)\cdot n}{2}=66\)
=> \(\left(n+1\right)\cdot n=132=11\cdot12\)
=> n = 11
Vậy n = 11