\(\frac{x^4}{x^2-4x+4}+\frac{^{x^2}}{x-2}-2=...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2019

pT <=>\(\frac{x^4}{\left(x-2\right)^2}+\frac{x^2}{x-2}-2=0\)

đk: x khác 2

Đặt \(\frac{x^2}{x-2}=t\)

Ta có phương trình:

\(t^2+t-2=0\Leftrightarrow t^2+2t-t-2=0\Leftrightarrow t\left(t+2\right)-\left(t+2\right)=0\Leftrightarrow\left(t+2\right)\left(t-2\right)=0\)

<=> \(\orbr{\begin{cases}t=2\\t=-2\end{cases}}\)

Với t=2 ta có:

\(\frac{x^2}{x-2}=2\Leftrightarrow x^2=2x-4\Leftrightarrow x^2-2x+4=0\Leftrightarrow\left(x-1\right)^2+3=0\)vô lí

Với t=-2:

\(\frac{x^2}{x-2}=-2\Leftrightarrow x^2=-2x+4\Leftrightarrow x^2+2x=4\Leftrightarrow\left(x+1\right)^2=5\Leftrightarrow\orbr{\begin{cases}x+1=\sqrt{5}\\x+1=-\sqrt{5}\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{cases}}\)(tm)

Vậy...

a, Đặt \(x^2-4x+8=a\left(a>0\right)\)

\(\Rightarrow a-2=\frac{21}{a+2}\)

\(\Leftrightarrow a^2-4=21\Rightarrow a^2=25\Rightarrow a=5\)

Thay vào là ra

9 tháng 3 2020

b) ĐK: \(y\ne1\)

bpt <=> \(\frac{4\left(1-y\right)}{1-y^3}+\frac{1+y+y^2}{1-y^3}+\frac{2y^2-5}{1-y^3}\le0\)

<=> \(\frac{3y^2-3y}{1-y^3}\le0\)

\(\Leftrightarrow\frac{y\left(y-1\right)}{\left(y-1\right)\left(y^2+y+1\right)}\ge0\)

\(\Leftrightarrow\frac{y}{y^2+y+1}\ge0\)

vì \(y^2+y+1=\left(y+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

nên bpt <=> \(y\ge0\)

25 tháng 5 2020

ĐK: x khác -2

Với x = 0 không phải là nghiệm của phương trình 

Với x khác 0 ta có: 

\(\frac{x}{x^2+4x+4}+\frac{5x}{x^2+4}+2=0\)

<=> \(\frac{1}{\left(x+\frac{4}{x}\right)+4}+\frac{5}{x+\frac{4}{x}}+2=0\)

Đặt: \(x+\frac{4}{x}=t\)

ta có phương trình: \(\frac{1}{t+4}+\frac{5}{t}+2=0\)

<=> \(t+5t+20+2t^2+8t=0\)

<=> \(t^2+7t+10=0\)

<=> \(\left(t^2+2t\right)+\left(5t+10\right)=0\)

<=> \(\left(t+2\right)\left(t+5\right)=0\)

<=> \(\orbr{\begin{cases}t=-2\\t=-5\end{cases}}\)

Với t = - 2 ta có: \(x+\frac{4}{x}=-2\Leftrightarrow x^2+2x+4=0\Leftrightarrow\left(x+1\right)^2+3=0\) vô nghiệm 

Với t  = - 5 ta có: \(x+\frac{4}{x}=-5\Leftrightarrow x^2+5x+4=0\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)

<=> x = - 1 hoặc x = -4 ( thỏa mãn ) 

Kết luận:...

Cách khác cô Chi !

ĐKXĐ  : \(x\ne-2\)

\(\frac{x}{x^2+4x+4}+\frac{5x}{x^2+4}+2=0\)

\(\frac{x\left(x^2+4\right)}{\left(x^2+4x+4\right)\left(x^2+4\right)}+\frac{5x\left(x^2+4x+4\right)}{\left(x^2+4\right)\left(x^2+4x+4\right)}+\frac{2\left(x^2+4x+4\right)\left(x^2+4\right)}{\left(x^2+4x+4\right)\left(x^2+4\right)}=0\)

\(x\left(x^2+4\right)+5x\left(x^2+4x+4\right)+2\left(x^2+4x+4\right)\left(x^2+4\right)=0\)

\(14x^3+56x+36x^2+2x^4+32=0\)

\(2\left(x^3+6x^2+12x+16\right)\left(x+1\right)=0\)

\(2\left(x^2+2x+4\right)\left(x+4\right)\left(x+1\right)=0\)

TH1 : \(2\ne0\)

TH2 : \(x^2+2x+4=0\)

Ta có : \(2^2-4.1.4=4-16=-12< 0\)(vô nghiệm)

TH3 : \(x+1=0\Leftrightarrow x=-1\)

TH4 : \(x+4=0\Leftrightarrow x=-4\)

11 tháng 2 2018

khó thể xem trên mạng

11 tháng 2 2018

bài 1 câu a bỏ x= nhé !

20 tháng 4 2018

a/ Đặt \(\hept{\begin{cases}\frac{x+1}{x-2}=a\\\frac{x+1}{x-4}=b\end{cases}}\) thì có

\(a^2+b-\frac{12b^2}{a^2}=0\)

\(\Leftrightarrow\left(a^2-3b\right)\left(a^2+4b\right)=0\)

b/ \(2x^2+3xy-2y^2=7\)

\(\Leftrightarrow\left(2x-y\right)\left(x+2y\right)=7\)

18 tháng 1 2017

Nhìn sơ qua thì thấy bài 3, b thay -2 vào x rồi giải bình thường tìm m

18 tháng 1 2017

Bài 2:

a) \(x+x^2=0\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x+1=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\x=0-1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\x=-1\end{cases}}\)

b) \(0x-3=0\)

\(\Leftrightarrow0x=3\)

\(\Rightarrow vonghiem\)

c) \(3y=0\)

\(\Leftrightarrow y=0\)

25 tháng 4 2017

tui giải câu a thôi nha

chia phương trình cho \(x^2\)ta có:

\(x^2+3x+4+\frac{3}{x}+\frac{1}{x^2}\)=0

\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)+3\left(x+\frac{1}{x}\right)+4\)=0

đặt \(x+\frac{1}{x}=a\Rightarrow x^2+\frac{1}{x^2}=a^2-2\)\(\Rightarrow a^2-2+3a+4=0\)\(\Leftrightarrow a^2+3a+2=0\)

\(\Leftrightarrow a^2+a+2a+2=0\Leftrightarrow\left(a+1\right)\left(a+2\right)=0\)

\(\Leftrightarrow a+1=0\)hoặc\(a+2=0\)

*a+1=0\(\Rightarrow a=-1\Rightarrow x+\frac{1}{x}=1\Rightarrow x+\frac{1}{x}-1=0\)\(\Leftrightarrow\frac{x^2-x+1}{x}=0\Leftrightarrow x^2-x+1=0\)

\(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)\(\Rightarrow\)loại

*a+2=0\(\Rightarrow a=-2\Rightarrow x+\frac{1}{x}=-2\Rightarrow x+\frac{1}{x}+2=0\)\(\Leftrightarrow\frac{x^2+2x+1}{x}=0\Leftrightarrow\frac{\left(x+1\right)^2}{x}=0\)

\(\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)

Vậy phương trình có nghiệm x=-1

2 tháng 5 2017

Phân tích  : x2-3x +2=(x-1)(x-2) , x2-4x +3 = (x-1 )(x-3) ,  điều kiện  : x # 1, x # 2 ,x # 3

pt tương đương với  : \(\frac{x+4}{\left(x-1\right)\left(x-2\right)}=\frac{2x+5+x+1}{\left(x-1\right)\left(x-3\right)}\)

                               <=> \(\frac{x+4}{\left(x-1\right)\left(x-2\right)}=\frac{3\left(x+2\right)}{\left(x-1\right)\left(x-3\right)}\)       

                              <=> \(\frac{\left(x+4\right)\left(x-3\right)-3\left(x-2\right)\left(x+2\right)}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}=0\)

                             <=> \(\frac{x\left(1-2x\right)}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}=0\)

                             <=> x=0 hoặc x=1/2

                           

27 tháng 3 2019

\(y^2+4^x+2y-2^{x+1}+2=0\)

\(\Leftrightarrow\left(y^2+2y+1\right)+\left(4^x-2^{x+1}+1\right)=0\)

\(\Leftrightarrow\left(y+1\right)^2+\left(2^x-1\right)^2=0\Leftrightarrow\hept{\begin{cases}y=-1\\x=0\end{cases}}\)

\(\frac{x^2+4x+6}{x+2}+\frac{x^2+16x+72}{x+8}=\frac{x^2+8x+20}{x+4}+\frac{x^2+12x+42}{x+6}\)

\(\Leftrightarrow\frac{x^2+4x+4+2}{x+2}+\frac{x^2+16x+64+8}{x+8}=\frac{x^2+8x+16+4}{x+4}+\frac{x^2+12x+36+6}{x+6}\)

\(\Leftrightarrow2x+10+\frac{2}{x+2}+\frac{8}{x+8}=2x+10+\frac{4}{x+4}+\frac{6}{x+6}\)

\(\Leftrightarrow\frac{2}{x+2}+\frac{8}{x+8}=\frac{4}{x+4}+\frac{6}{x+6}\)

Tới đây quy đồng làm tiếp nhé