Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
6k+2=2(k+1) chia hết cho 2 nên là hợp số
Ta cũng có:
6k+3=3(k+1) chia hết cho 3 nên là hợp số
Vậy không có số nguyên tố nào được viết dưới dạng 6k+2 ; 6k+3 (k \(\in\) N )
mọi số tự nhiên chia cho 6 có số dư là 1,2,3,4,5
th1:k=0suy ra p=6k hợp số (loại)
th2 k=1suyra p= 6k+1
th3 k=2suy ra p=6k+2 (chọn)
th4 k=3suy ra p=6k+3 (chọn)
vậy p có dạng 6k+2 ; 6k+3
tick nhanguyễn thị mi
B1 :
Vì 2^4 = 16 chia hết cho 16
=> A chia hết cho 16
Vì 5^3 = 125 chia hết cho 25
=> A chia hết cho 25 (1)
A chia hết cho 16 => A chia hết cho 4 (2)
Từ (1) và (2) => A chia hết cho 100 ( vì 4 và 25 là 2 số nguyên tố cùng nhau )
Vì 2^4 chia hết cho 16
5^3 chia hết cho 25
=> A chia hết cho 16.25 = 400
=> A chia hết cho 40
Mà 7^8 chia hết cho 7 => A chia hết cho 7
=> A chia hết cho 280 ( vì 40 và 7 là 2 số nguyên tố cùng nhau )
k mk nha