Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
= (2x)2 2.2x+1 +2
=(2x+1)2+2(luôn dương)
b. =x2 +2x.1/2 +1/4+3/4
= (x+1/2)2+3/4 (luôn dương)
c. 2C=(2x)2-4x1/2 +1/4+7/4
= (2x-1/2)2+7/4
r bạn suy ra C luôn dương :>
A= 4x2-4x+3 = 4x2-4x+1+2 = (4x2-4x+1)+2 = (2x-1)2 +2
Vì (2x-1)2 >=0 với mọi x nên (2x-1)2 +2 >0 với mọi x
B= x2+x+1 = x2+x+1/4 +3/4 = (x2+x+1/4) +3/4 = (x+1/2)2 +3/4
Vì (x+1/2)2 >=0 với mọi x nên (x+1/2)2 +3/4 > 0 với mọi x
C=2x2-x+2 = 2(x2-1/2x+1) = 2(x2-1/2x + 1/16 +15/16) = 2[(x-1/4)2 + 15/16] = 2(x-1/4)2 + 15/8
Vì 2(x-1/4)2 >=0 với mọi x nên 2(x-1/4)2 + 15/8 > 0 với mọi x
2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)
b) \(x^2+16x+64=\left(x+8\right)^2\)
c) \(x^3-8y^3=x^3-\left(2y\right)^3\)
\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)
d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)
Ta có : x2 - x + 1
=.\(x^2+2x\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Mà \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
Nên : \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Hay \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
Vậy giá trị của biểu thức luôn luôn dương với mọi x
Ta có : x2 - 8x + 17
= x2 - 2.x.4 + 16 + 1
= (x - 4)2 + 1
Mà (x - 4)2 \(\ge0\forall x\)
Nên : (x - 4)2 + 1 \(\ge1\forall x\)
Hay (x - 4)2 + 1 \(>0\forall x\)\(>0\forall x\)
Vậy giá trị của biểu thức luôn luôn dương với mọi x
Hình như bạn viết sai đề,câu a câu b có x^2 mới đúng chứ?
x2 - 8x + 20
= x2 - 8x + 20
= ( x2 - 8x + 16 ) + 4
= ( x - 4 )2 + 4 ≥ 4 > 0 ∀ x ( đpcm )
x2 + 5y2 + 2x + 6y + 34
x2 + 5y2 + 2x + 6y + 34
= ( x2 + 2x + 1 ) + ( 5y2 + 6y + 9/5 ) + 156/5
= ( x + 1 )2 + 5( y2 + 6/5y + 9/25 ) + 156/5
= ( x + 1 )2 + 5( y + 3/5 )2 + 156/5 ≥ 156/5 > 0 ∀ x, y ( đpcm )
bn kham khảo ở đây nha
Câu hỏi của Mimi - Toán lớp 8 | Học trực tuyến
vào thống kê hoie đáp của mình có chữ màu xanh trng câu hỏi này nhấn zô đó sẽ ra
hc tốt:~:B~
a) \(x^2-8x+2018=x^2-8x+16+2002=\left(x^2-8x+16\right)+2002=\left(x-4\right)^2+2002\)
Vì \(\left(x-4\right)^2\ge0\)
\(\Rightarrow\left(x-4\right)^2+2002\ge2002\)(Luôn Luôn Dương)
b)\(3x^2+6x+7=3x^2+6x+3+4=3\left(x^2+2x+1\right)+4=3\left(x+1\right)^2+4\)
Vì \(3\left(x+1\right)^2\ge0\)
\(\Rightarrow3\left(x+1\right)^2+4\ge4\)(Luôn Luôn Dương)
c)\(3x^2-6x+5=3x^2-6x+3+2=3\left(x^2-2x+1\right)+2=3\left(x-1\right)^2+2\)
Vì \(3\left(x-1\right)^2\ge0\)
\(\Rightarrow3\left(x-1\right)^2+2\ge2\)(Luôn Luôn Dương)
d)\(x^2-8x+19=x^2-8x+16+3=\left(x^2-8x+16\right)+3=\left(x-4\right)^2+3\)
Vì \(\left(x-4\right)^2\ge0\)
\(\Rightarrow\left(x-4\right)^2+3\ge3\)(Luôn Luôn Dương)
\(A=2x^2-3y+8x+y^2+11\)
\(=\left(2x^2+8x+8\right)+\left(y^2-3y+\frac{9}{4}\right)+\frac{3}{4}\)
\(=2\left(x^2+4x+4\right)+\left(y^2-3y+\frac{9}{4}\right)+\frac{3}{4}\)
\(=2\left(x+2\right)^2+\left(y-\frac{3}{2}\right)^2+\frac{3}{4}\)
Vì: \(2\left(x+2\right)^2+\left(y-3\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x,y\)
\(\Rightarrow2\left(x+2\right)^2+\left(y-\frac{3}{2}\right)^2+\frac{3}{4}>0\forall x,y\)
=.= hok tốt!!
Ta có\(A=2x^2-3y+8x+y^2+11\)
\(=2.\left(x^2+2.x.4+4^2\right)-5-3y+y^2\)
\(=2.\left(x+4\right)^2+\left(y^2-2.y.\frac{3}{2}+\frac{9}{4}\right)-5-\frac{9}{4}\)
\(=2.\left(x+4\right)^2+\left(y-\frac{3}{2}\right)^2-\left(5+\frac{9}{4}\right)< 0\)với mọi x
Không thể làm luôn dương được , chắc mình sai , thôi góp ý vậy
\(A=x^2+8x+17=x^2+8x+16+1=\left(x+4\right)^2+1>0\forall x\)
\(B=x^2-10x+29=x^2-10x+25+4=\left(x-5\right)^2+4>0\forall x\)
\(C=-x^2+2x-5=-\left(x^2-2x+5\right)=-\left(x^2-2x+1+4\right)\)
\(=-\left[\left(x-1\right)^2+4\right]=-\left(x-1\right)^2-4< 0\forall x\)