K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2018

khó quá

30 tháng 12 2018

mình mới họclớp 5 à khó quá

31 tháng 5 2020

\(A=3\left(a^2+\left(\frac{1}{a}\right)^2\right)x^2y^4z^6\)

Ta có : \(a^2;\left(\frac{1}{a}\right)^2\ge0\forall a\Rightarrow3\left(a^2+\left(\frac{1}{a}\right)^2\right)\ge0\forall a\)

\(x^2;y^4;z^6\ge0\forall x;y;z\)

=> \(A=3\left(a^2+\left(\frac{1}{a}\right)^2\right)x^2y^4z^6\ge0\)

=> A luôn nhận giá trị không âm với mọi x, y, z

Để A = 0 => Ít nhất một giá trị = 0

=> Hoặc x = 0 ; y = 0 ; z = 0 thì A = 0 

4 tháng 3 2018

Ta có: \(a^2,x^2,y^4,z^6\ge0\)với \(\forall a,x,y,z\)

Dấu "=" xảy ra khi \(a=x=y=z=0\)

Lại có: \(3\left(a^2+\frac{1}{a^2}\right)\)khác 0 với \(\forall a\)

Do đó để A = 0 thì x = 0 hoặc y = 0 hoặc z = 0

30 tháng 5 2020

Cho dơn thức A=3.(a^2+1/a^2).x^2.y^4.z^6 với a là hằng số: chứng minh đơn thức A luôn khong âm với mọi x,y,z và với giá trị nào của x,y,z thì A=0

13 tháng 4 2020

a)

B=\(4x^2y^2z\left(-3x^2z\right)\)

B=\(\left[4\left(-3\right)\right]\left(x^2x^2\right)y^2\left(zz\right)\)

B=\(-12x^4y^2z^2\)

=> \(\left\{{}\begin{matrix}Heso:-12\\Phanbien:x^4\\Bac:8\end{matrix}\right.y^2z^2\)

b)

Thay x=-2, y=-1, z=1 vào biểu thức B có:

B= \(-12\left(-2\right)^4\left(-1\right)^2\left(1\right)^2\)

B= \(-12.16.1.1\)

B= -192

20 tháng 3 2017

lũy thừa của a,x,y,z đều chẵn nên tổng sẽ dương với mọi x,y,z

x = 0 hoặc y = 0 hoặc z = 0 thì cả tích bằng 0