K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1/Chu vi hình tròn có bán kính 5 cm là :
A. 2,5π cm
B. 5π cm
C. 2π cm
D. 10π cm
2/ Diện tích hình quạt tròn có d=4cm và số đo cung = 36° là :
A.4π/5 dm2
B. 8π/5 dm2
C. 2π/5 dm
D. 2π/5 dm2
3/ Khẳng định nào sau đây là khẳng định đúng :
A. Hai cung có số đo = nhau thì = nhau
B. Góc nội tiếp chắn nửa đường tròn là góc vuông
C. Trong 1 đường tròn, các góc nội tiếp = nhau thì cùng chắn 1 cung
D. Tứ giác có tổng hai góc bằng 180° thì nội tiếp được đường tròn
4/ Cho đường tròn tâm O, có đường kính AB vuông góc với dây CD tại E. Khẳng định nào sau đây sai :
A. AC>AD
B. CE>ED
C. cung AC > cung AD
D. cung BC > cung BD
5/ Trên đường tròn tâm O lấy hai điểm A, B sao cho góc AOB=60°. Số đo cung nhỏ AB là :
A. 120°
B. 300°
C. 30°
D. 60°
6/ Bán kính của đường tròn có diện tích 9π (cm2) là :
A. 9 cm
B. 3 cm
C. 6 cm
D. 4.5 cm
7/ Tìm hai số tự nhiên biết tổng của hai số tự nhiên bằng 2017, nếu lấy số lớn chia cho số nhỏ thì được thương là 117 dư 11. Gọi x,y là hai số tự nhiên cần tìm ( x>y ) . Khi đó ta lập được hệ pt nào sau đây
A.{x+y =2017
x=117y+11
B. {x+ y = 2017
y=117x +11
C. {x+y=2017
x+117y= 11
D. {x+y=2017
x=117y-11
8/ Cho pt ẩn x : x2 + ( m+1 )x +m = 0 ( m là tham số ). ĐK của m để pt có nghiệm là :
A. với m>=0
B. với mọi giá trị của m
C. với m=0
D. với m>0
9/ Pt 5x2 -15x +10 =0 có nghiệm là :
A. S=15
B. S=10
C. S=3
D. S= -3
10/ Độ dài đường tròn tâm O bán kính 3 cm là bao nhiêu ?
A. 9π ( cm )
B. 6π ( cm )
C. 9π ( cm2 )
D. 6π ( cm2 )
11/ Điểm nào sau đây thuộc đồ thị hàm số x=-2
A. M(2;-4)
B. P (1;1 )
C. Q ( -4;2 )
D. N (2;4 )
12/ Nghiệm của hệ pt {2x+y=2 là ?
x - y=4
A. ( -2;2 )
B. ( 1;-5 )
C. ( 3; -1 )
D. ( 2; -2 )
13/ Hệ pt 2x-3y=m-1
4x+my=-14
A. m=1
B. m=-1
C. m= 6
D. m=-6

0
1/Chu vi hình tròn có bán kính 5 cm là :A. 2,5π cmB. 5π cmC. 2π cmD. 10π cm2/ Diện tích hình quạt tròn có d=4cm và số đo cung = 36° là :A.4π/5 dm2B. 8π/5 dm2C. 2π/5 dmD. 2π/5 dm23/ Khẳng định nào sau đây là khẳng định đúng :A. Hai cung có số đo = nhau thì = nhauB. Góc nội tiếp chắn nửa đường tròn là góc vuôngC. Trong 1 đường tròn, các góc nội tiếp = nhau thì cùng chắn 1 cungD. Tứ giác có tổng hai góc bằng...
Đọc tiếp

1/Chu vi hình tròn có bán kính 5 cm là :
A. 2,5π cm
B. 5π cm
C. 2π cm
D. 10π cm
2/ Diện tích hình quạt tròn có d=4cm và số đo cung = 36° là :
A.4π/5 dm2
B. 8π/5 dm2
C. 2π/5 dm
D. 2π/5 dm2
3/ Khẳng định nào sau đây là khẳng định đúng :
A. Hai cung có số đo = nhau thì = nhau
B. Góc nội tiếp chắn nửa đường tròn là góc vuông
C. Trong 1 đường tròn, các góc nội tiếp = nhau thì cùng chắn 1 cung
D. Tứ giác có tổng hai góc bằng 180° thì nội tiếp được đường tròn
4/ Cho đường tròn tâm O, có đường kính AB vuông góc với dây CD tại E. Khẳng định nào sau đây sai :
A. AC>AD
B. CE>ED
C. cung AC > cung AD
D. cung BC > cung BD
5/ Trên đường tròn tâm O lấy hai điểm A, B sao cho góc AOB=60°. Số đo cung nhỏ AB là :
A. 120°
B. 300°
C. 30°
D. 60°
6/ Bán kính của đường tròn có diện tích 9π (cm2) là 
A. 9 cm
B. 3 cm
C. 6 cm
D. 4.5 cm
7/ Tìm hai số tự nhiên biết tổng của hai số tự nhiên bằng 2017, nếu lấy số lớn chia cho số nhỏ thì được thương là 117 dư 11. Gọi x,y là hai số tự nhiên cần tìm ( x>y ) . Khi đó ta lập được hệ pt nào sau đây :
A.{x+y =2017
     x=117y+11
B. {x+ y = 2017
      y=117x +11
C. {x+y=2017
      x+117y= 11
D. { x+y=2017
       x=117y-11
8/ Cho pt ẩn x : x2 + ( m+1 )x +m = 0 ( m là tham số ). ĐK của m để pt có nghiệm là :
A. với m>=0
B. với mọi giá trị của m
C. với m=0
D. với m>0
9/ Pt 5x2 -15x +10 =0 có nghiệm là :
A. S=15
B. S=10
C. S=3
D. S= -3
10/ Độ dài đường tròn tâm O bán kính 3 cm là bao nhiêu ?
A. 9π ( cm )
B. 6π ( cm )
C. 9π ( cm2 )
D. 6π ( cm2 )
11/ Điểm nào sau đây thuộc đồ thị hàm số x=-2
A. M(2;-4)
B. P (1;1 )
C. Q ( -4;2 )
D. N (2;4 )
12/ Nghiệm của hệ pt {2x+y=2 là ?
                                          x - y=4
A. ( -2;2 )
B. ( 1;-5 )
C. ( 3; -1 )
D. ( 2; -2 )
13/ Hệ pt {2x-3y=m-1 
                   4x+my=-14  

vô số nghiệm khi :
A. m=1
B. m=-1
C. m= 6
D. m=-6

0
18 tháng 11 2017

(A) Sai. Góc nội tiếp là góc có đỉnh nằm trên đường tròn, hai cạnh chứa hai dây cung của đường tròn đó.

(B) Sai. Trong một đường tròn, hai góc nội tiếp bằng nhau thì cùng chắn một cung hoặc chắn hai cung bằng nhau.

(C) Sai. Trong một đường tròn, hai góc nội tiếp chắn hai cung bằng nhau thì bằng nhau.

(D) Sai. Trong một đường tròn, số đo của góc nội tiếp bằng một nửa số đo của góc ở tâm cùng chắn một cung.

(E) Đúng. Trong một đường tròn, góc nội tiếp có số đo bằng nửa số đo của góc ở tâm cùng chắn một cung.

14 tháng 5 2017

a , b ,d ,e dung

c sai va dung

5 tháng 4 2019

a,b,d,e đúng

c sai

6 tháng 5 2018

a. Vì \(CE\perp MA\)tại E (gt) => \(\widehat{AEC}=90^o\)

\(CD\perp AB\)tại D=> \(\widehat{ADC}=90^o\)

Xét tứ giác AECD có: \(\widehat{AEC}+\widehat{ADC}=90^o+90^o=180^o\)=> AECD là tứ giác nội tiếp đt \((G,R=\frac{AC}{2})\)trong đó G là trung điểm của AC (dhnb)

Cmtt ta có: BFCD là tứ giác nội tiếp đt \((H,R=\frac{BC}{2})\)trong đó H là trung điểm của BC

b. 

Vì AECD là tứ giác nội tiếp (cmt) => \(\widehat{EAC}=\widehat{EDC}\)(2 góc nội tiếp cùng chắn \(\widebat{EC}\)) (1)

Do MA là tiếp tuyến của đt(O) (gt)=> \(\widehat{EAC}=\frac{1}{2}sđ\widebat{AC}\)(t/c góc tạo bởi tiếp tuyến và dây cung)

Xét đt (O) có: \(\widehat{ABC}=\widehat{DBC}=\frac{1}{2}sđ\widebat{AC}\)(t/c góc nội tiếp) => \(\widehat{EAC}=\widehat{DBC}\)(2)

vì BFCD là tứ giác nội tiếp => \(\widehat{DBC}=\widehat{DFC}\)(2 góc nội tiếp cùng chắn \(\widebat{DC}\)) (3)

Từ (1),(2) và (3) => \(\widehat{EDC}=\widehat{DFC}\)

do AECD là tứ giác nội tiếp (cmt) => \(\widehat{CED}=\widehat{CAD}\)(2 góc nội tiếp cùng chắn \(\widebat{CD}\)) (4)

Vì MB là tiếp tuyến của đt (O) tại B (gt) => \(\widehat{CBF}=\frac{1}{2}sđ\widebat{BC}\)(T/c góc tạo bởi tiếp tuyến và dây cung)

Xét đt (O) có: \(\widehat{BAC}=\widehat{DAC}=\frac{1}{2}sđ\widebat{BC}\)(t/c góc nội tiếp) => \(\widehat{CBF}=\widehat{DAC}\)(5)

lại có: BFCD là tứ giác nội tiếp (cmt) => \(\widehat{CBF}=\widehat{CDF}\)(2 góc nội tiếp cùng chắn \(\widebat{CF}\)) (6)

Từ (4), (5) và (6) => \(\widehat{CED}=\widehat{CDF}\)

Xét \(\Delta ECD\)và \(\Delta DCF\)có:

\(\widehat{CED}=\widehat{CDF}\)(Cmt)

\(\widehat{EDC}=\widehat{DFC}\)(Cmt)

=> \(\Delta ECD~\Delta DCF\)(g.g) => \(\frac{EC}{DC}=\frac{CD}{CF}\Rightarrow CD^2=CE\times CF\)(Đpcm)

c. Vì I là giao điểm của AC và DE (gt) => \(I\in AC\)

K là giao điểm của BC và DF (gt) => \(K\in BC\)

=> \(\widehat{ICK}=\widehat{ACB}\)

Vì \(\widehat{EDC}=\widehat{ABC}\left(cmt\right)\Rightarrow\widehat{IDC}=\widehat{ABC}\left(do\overline{E,I,D}\Rightarrow\widehat{EDC}=\widehat{IDC}\right)\)

\(\widehat{CDF}=\widehat{BAC}\left(cmt\right)\Rightarrow\widehat{CDK}=\widehat{BAC}\left(do\overline{F,K,D}\Rightarrow\widehat{CDF}=\widehat{CDK}\right)\)

Xét tứ giác ICKD có : \(\widehat{ICK}+\widehat{IDK}=\widehat{ICK}+\widehat{IDC}+\widehat{CDK}=\widehat{ACB}+\widehat{ABC}+\widehat{BAC}=180^o\)

(Áp dụng định lý tổng 3 góc trong \(\Delta ABC\)ta có: \(\widehat{ACB}+\widehat{ABC}+\widehat{BAC}=180^o\))

=> Tứ giác ICKD là tứ giác nội tiếp (dhnb) => 4 điểm I,C,K,D cùng thuộc 1 đường tròn (đpcm)

d. Vì ICKD là tứ giác nội tiếp (cmt) => \(\widehat{CIK}=\widehat{CDK}\)(2 góc nội tiếp cùng chắn \(\widebat{CK}\))

Lại có: \(\widehat{CDK}=\widehat{BAC}\)(Cmt)  => \(\widehat{CIK}=\widehat{BAC}\)mà 2 góc này ở vị tri đồng vị => IK // AB (Dhnb)

Do \(CD\perp AB\left(gt\right)\)=> \(IK\perp CD\)(Quan hệ tính vuông góc và tính song song của 3 đt)

10 tháng 2 2019

Bạn cho mình hỏi ở phần nào đk ?

 1 Cho đường tròn (O;R)và điểm A nằm ngoài (O).Từ A kẻ 2 tiếp tuyến AB và AC với (O),( B,C là các tiếp điểm).Gọi H là điểm của OA và BCa)CM Tg ABOC nội tiếpb)CM OA là đường trung trực của BCc)Lấy điểm D đối xứng B qua O.Gọi E là giao điểm của đoạn AD với (O),E không trùng DCM:d)Tính số đo góc HEC2 . Cho đường tròn tâm (O;R) có dây BC cố định (BC khác 2R) và điểm A di động trên cung lớn BC (...
Đọc tiếp

 

1 Cho đường tròn (O;R)và điểm A nằm ngoài (O).Từ A kẻ 2 tiếp tuyến AB và AC với (O),( B,C là các tiếp điểm).Gọi H là điểm của OA và BC
a)CM Tg ABOC nội tiếp
b)CM OA là đường trung trực của BC
c)Lấy điểm D đối xứng B qua O.Gọi E là giao điểm của đoạn AD với (O),E không trùng D
CM:
d)Tính số đo góc HEC

2 . 

Cho đường tròn tâm (O;R) có dây BC cố định (BC khác 2R) và điểm A di động trên cung lớn BC ( A không trùng B,C và điểm chính giữa cung lớn BC ). Gọi H là hình chiếu của A trên BC; E và F lần lượt là hình chiếu của B,C trên đường kính AD của đường tròn (O;R)

a,CMR:các tứ giác ABHE và AHFC nội tiếp

b,Giả sử BC=R√3,EF=R/√3.Tính số đo ^BAC và tỷ số diện tích △ ABC và △ HÈ

c,CMR:khi điểm A di động thì tâm đường tròn ngoại tiếp △ HÈ là một điểm cố định

3
5 tháng 4 2020

Bài 2

a) Ta có \(\widehat{AEB}=\widehat{AHB}=90^o\). Tứ giác ABHE nội tiếp

=> \(\widehat{EHC}=\widehat{ABA'}=\widehat{BCA'}\)

=> HE//CA'

Vì CA' _|_ AC => HE _|_ AC

c) Gọi M là trung điểm của AB, N là trung điểm BC

Đường tròn ngoại tiếp ABHE có tâm là M nên M nằm trên đường trung trực của HE

Do HE _|_ AC nên trung trực của HE song song với AC và chứa đường trung bình của tam giác ABC

Do đó trung điểm N của BC nằm trên trung trự của HE

Mặt khác E,F là chân đường vuông góc của B và C hạ xuông AA' nên trung trực của EF đi qua trung điểm N của BC

Vậy N là tâm của đường tròn ngoại tiếp tam giác HEF là 1 điểm cố định cho BC cố định

5 tháng 4 2020

Bài 1

bổ sung câu c bài hỏi .là : CM \(\frac{DE}{BE}=\frac{BD}{BA}\)

bài làm

a) ta có . tam giác ACO zuông tại C , Tam giác ABO zuông tại B

nên C , B lần lượt nhìn AO zới 1 góc =90 độ

=> ABCO nội tiếp 

b) ta có tam giác ABC cân tại A do AB=AC

mà AH là đường cao

nên AH cx là đường trung tuyến

=> CH = HB

=> AO là đường trung trực của CB

c) ta có BD là đường kính của O 

nên góc BED = 90 độ

xét 2 tam giác zuông BED zà ABD có

góc BAD = góc BDA ( cùng nhìn \(\widebat{BE}\)

BD chung

=> tam giác BED = tam giác DBA 

=> \(\frac{DE}{BE}=\frac{BD}{BA}\)

3 tháng 5 2018

a. Ta có: \(\widehat{ADB}=90^o\)(góc nội tiếp chắn nửa đường tròn) => \(\widehat{ADE}=90^o\)

Lại có: \(CH\perp AB\)tại H (gt)  mà E \(\in CH\)(do  E là giao điểm của BD và CH (gt)) => \(\widehat{EHA}=90^o\) 

Xét tứ giác ADEH có: \(\widehat{ADE}+\widehat{EHA}=90^o+90^o=180^o\)=> tứ giác ADEH nội tiếp (DHNB) => đpcm

b.

Ta có: \(\widehat{ACB}=90^o\)(góc nội tiếp chắn nữa đường tròn) => \(\Delta ABC\)vuông tại C

=> \(S\Delta ABC=\frac{1}{2}AC\times BC=\frac{1}{2}CH\times AB\)=> CH = \(\frac{AC\times BC}{AB}\)

=> \(AC\times AH+CB\times CH=AC\times AH+CB\times\frac{AC\times BC}{AB}\)\(AC\times(AH+\frac{BC^2}{AB})=AC\times\frac{(AH\times AB+BC^2)}{AB}\)(1)

Áp dụng hệ thức lượng trong \(\Delta ABC\)vuông tại C với đường cao CH ta được: AH \(\times AB=AC^2\)(2)

Áp dụng định lý pitago trong \(\Delta ABC\)vuông tại C ta được: \(AC^2+BC^2=AB^2\)(3)

Thế (2) và (3) vào (1) ta được : \(AC\times AH+CB\times CH=AB\times AC\)(ĐPCM)

c. Gọi K là điểm chính giữa cung AB (K nằm cùng phía với C so với bờ AB) => K là điểm cố định và \(KO\perp AB\)tại O => KO // CH => \(\widehat{KOC}=\widehat{KOM}=\widehat{HCO}\)(So le trong)

Nối K với M 

Xét \(\Delta KOM\)và \(\Delta OCH\)có:

+ KO = OC = R

\(\widehat{KOM}=\widehat{HCO}\)(cmt)

+ OM = CH (gt) 

=> \(\Delta KOM=\Delta OCH\)(c.g.c) => \(\widehat{KMO}=\widehat{OHC}=90^o\Rightarrow\Delta KOM\)vuông tại M => M \(\in(I,\frac{OK}{2})\)cố định (trong đó I là trung điểm của OK)