K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2017

1. M N P K H

Kẻ \(MH\perp NP\) tại H

Ta có: \(S_{MNP}=\dfrac{1}{2}MH.NP\) (1)

\(S_{MNK}=\dfrac{1}{2}MH.KN\) (2)

Ta lại có: KN=MN mà NM<NP

\(\Rightarrow KN< NP\) (3)

Từ (1),(2) và (3) suy ra: \(S_{MNP}>S_{MNK}\)

2.

\(Sin^21^o+Sin^22^o+Sin^23^o+...+Sin^287^o+Sin^288^o+Sin^298^o\)

\(=\left(Sin^21^o+Sin^289^o\right)\left(Sin^22^o+Sin^288^o\right)+...+Sin^245^o\\ =\left(Sin^21^o+Cos^21^o\right)\left(Sin^22^o+Cos^22^o\right)+....+Sin^245^o\\ =44+Sin^245^o\\ =44+\dfrac{1}{2}=44,5\)

26 tháng 7 2018

Câu trả lời này có tính chất là ko giúp được cái gì cả !

3 tháng 8 2018

4. \(D=sin^21^o+sin^22^o+sin^23^o+...+sin^287^o+sin^288^o+sin^289^o=\left(sin^21^o+sin^289^o\right)+\left(sin^22^o+sin^288^o\right)+...+\left(sin^244^o+sin^246^o\right)+sin^245^o=1+1+1+...+1+1+0,5=44,5\)

3 tháng 8 2018

\(5.E=cos^21^o+cos^22^o+cos^23^o+...+cos^287^o+cos^288^o+cos^289^o=\left(cos^21^o+cos^289^o\right)+\left(cos^22^o+cos^288^o\right)+...+\left(cos^244^o+cos^246^o\right)+cos^245^o=1+1+1+...+1+0,5=1.44+0,5=44,5\)

25 tháng 7 2023

\(\left(sin^22+cos^22\right)+\left(sin^24+cos^24\right)+....+\left(sin^222+cos^222\right)\)

\(=1.22=22\)

=(sin^2 2 độ+cos^2 2 độ)+(sin^2 4 độ+cos^2 4 độ)+...+(sin^2 44 độ+cos^2 44 độ)

=1+1+...+1

=1*22=22

21 tháng 10 2015

\(A=\left(sin^212^o+sin^278^o\right)+\left(sin^21^o+sin^289^o\right)+\left(sin^273^o+sin^217^o\right)\)

\(A=\left(sin^290^o\right)+\left(sin^290^o\right)+\left(sin^290^o\right)\)

\(A=1+1+1=3\)

 

8 tháng 8 2018

b) \(sin^23^o+sin^215^o+sin^275^o+sin^287^o\)

\(=\left(sin^23^o+cos^23^o\right)+\left(sin^215^o+cos^215^o\right)\)

\(=1+1=2\)

8 tháng 8 2018

a) \(cos^212^o+cos^278^o+cos^21^o+cos^289^o\)

\(=\left(sin^278^o+cos^278^o\right)+\left(sin^289^o+cos^289^o\right)\)

\(=1+1=2\)

17 tháng 4 2020

Câu c) là gì vậy, có lẽ là toán cực trị, GTLN?

a) Vì M thuộc (O) nên các tam giác BMA và CMD vuông tại M nên:

\(sin^2MBA+sin^2MAB+sin^2MCD+sin^2MDC\)

\(=\left(sin^2MBA+cos^2MBA\right)+\left(sin^2MCD+cos^2MCD\right)\)

\(=1+1=2\)

b) KOHM là hình chữ nhật nên: OK = MH
Mà MH2 = HA.HB (Hệ thức lượng trong tam giác vuông MAB có MH đường cao)
và BH = AB - AH = 2R – AH
Suy ra \(OK^2=MH^2=AH\left(2R-AH\right)\)

24 tháng 8 2019

bài 2 là tính tan C nhá

mik vt nhầm