K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2018

a) Do EC// AB nên \(\widehat{ECD}=\widehat{ABC}=60^o\)

Do ED// AC nên \(\widehat{EDC}=\widehat{ACB}=60^o\)

Xét tam giác ECD có \(\widehat{ECD}=\widehat{EDC}=60^o\Rightarrow\widehat{CED}=60^o\)

Suy ra ECD là tam giác đều.

b) Ta có :

\(\widehat{BCE}=\widehat{BCA}+\widehat{ACE}=60^o+\widehat{ACE}=\widehat{ECD}+\widehat{ACE}=\widehat{ACD}\)

Xét tam giác BCE và tam giác ACD có:

BC = AC (gt)

CD = CE (Do tam giác ECD đều)

\(\widehat{BCE}=\widehat{ACD}\)  (cmt)

\(\Rightarrow\Delta BCE=\Delta ACD\left(c-g-c\right)\)

\(\Rightarrow BE=AC\)

c) Do \(\Delta BCE=\Delta ACD\Rightarrow\widehat{CBI}=\widehat{CAI}\)

Vậy thì \(\widehat{CBJ}+\widehat{BJC}=\widehat{JAI}+\widehat{JAI}\)

\(\Rightarrow180^o-\left(\widehat{CBJ}+\widehat{BJC}\right)=180^o-\left(\widehat{JAI}+\widehat{JAI}\right)\)

\(\Rightarrow\widehat{AIJ}=\widehat{JCB}=60^o\)

\(\Rightarrow\widehat{BID}=180^o-60^o=120^o\)  (Hai góc kề bù)

\(\Rightarrow\widehat{BID}=2\widehat{BAC}\)

29 tháng 8 2021

Bạn tham khảo nhé: https://hoidap247.com/cau-hoi/1373235

 

2 tháng 1 2018

Vẽ phân giác góc zOy là tia Ot 
Vẽ AN vuông góc với Ot (N thuộc Ot )
AN cắt Oz tại M 
Do Ot vừa là phân giác vừa là trung tuyến (AN = NM )
=> Tam giác AMO cân ở O 
=> OA = OM mà OA = DB (gt)
=> BD = OM 
=> OB = MD 

Do tam giác OMA cân ở O 
=> góc OMA = góc OAM (*1)
mặt khác trong tam giác HOB và NOA vuông ở H và N có :
góc HOB + HBO = góc NOA + góc NAO = 90*
mà góc HOB = góc NOA ( cùng bằng 1/2 góc zOy) 
=> góc HBO = NAO 

mà góc HBO = MBA 
=> góc MBA = góc NAO ``````` (*2)

Từ (*1)(*2)
=> Góc MBA = OMA 
=> tam giác ABM cân ở A
=> BA = MA 
và góc OBA => góc AMD ( cùng kề bù với hai góc ABM và góc AMB )

Từ mấy cái chữ đỏ 
=> Tam giác OBA = tam giác DMA ( c.g.c) 
=> OA = AD => tam giác OAD cânb ở A

14 tháng 5 2016

bai nay ve them duong vuong goc tu D cat oy la ra ay ma

3 tháng 8 2017

Vẽ phân giác góc zOy là tia Ot 
Vẽ AN vuông góc với Ot (N thuộc Ot )
AN cắt Oz tại M 
Do Ot vừa là phân giác vừa là trung tuyến (AN = NM )
=> Tam giác AMO cân ở O 
=> OA = OM mà OA = DB (gt)
=> BD = OM 
=> OB = MD 

Do tam giác OMA cân ở O 
=> góc OMA = góc OAM (*1)
mặt khác trong tam giác HOB và NOA vuông ở H và N có :
góc HOB + HBO = góc NOA + góc NAO = 90*
mà góc HOB = góc NOA ( cùng bằng 1/2 góc zOy) 
=> góc HBO = NAO 

mà góc HBO = MBA 
=> góc MBA = góc NAO ``````` (*2)

Từ (*1)(*2)
=> Góc MBA = OMA 
=> tam giác ABM cân ở A
=> BA = MA 
và góc OBA => góc AMD ( cùng kề bù với hai góc ABM và góc AMB )

=> Tam giác OBA = tam giác DMA ( c.g.c) 
=> OA = AD => tam giác OAD cânb ở A

  1. Cho x'x//y'y, MN cắt x'x tại M, y'y tại N. E, F thuộc y'y về 2 phía của N : NE =NF=MN.CMR:a) ME, MF là  2 tia phân giác của góc  xMN, x'MN b) tam giác MEF vuông2. Cho tam giác ABC  cân tại A, trên tia đối của tia  BC lấy điểm D ,E sao cho CE=BD . Nối AD, AE. So sánh góc ABD với ACE. CM tam giác ADE cân3. CHOtam giác ABC tia phân giác góc B, C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC, cắt AB tại D, cắt AC tại...
Đọc tiếp

  1. Cho x'x//y'y, MN cắt x'x tại M, y'y tại N. E, F thuộc y'y về 2 phía của N : NE =NF=MN.CMR:a) ME, MF là  2 tia phân giác của góc  xMN, x'MN b) tam giác MEF vuông
2. Cho tam giác ABC  cân tại A, trên tia đối của tia  BC lấy điểm D ,E sao cho CE=BD . Nối AD, AE. So sánh góc ABD với ACE. CM tam giác ADE cân
3. CHOtam giác ABC tia phân giác góc B, C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC, cắt AB tại D, cắt AC tại E. CM DE =DB +EC
4. CHO TAM GIÁC ABC VUÔNG TẠI A và góc B =60°. Cx vuông góc với BC, trên tia Cx lấy đoạn CE=CA ( CE, CA CÙNG PHÍA VỚI BC ). KÉO DÀI CB LẤY F : BF =BA. CM TAM GIÁC ABC ĐỀU VÀ 3 ĐIỂM E, A, F THẲNG HÀNG
5. Cho tam giác ABD : góc B=2D, kẻ AH vuông góc với BD  (H thuộc BD ). Trên tia đối của tia BA lấy BE =BH. Đường thẳng EH cắt AD tại F. CM FH=FA =FD
6. Cho tam giác ABC cân tại A, đường cao AH. Trên tia AH lấy điểm D sao cho H là trung điểm của đoạn thẳng AD. Nối CD. CM CD=AB và CB là tia phân giác của góc ACD
7. CHO tam giác ABC cân tại A, đường cao BH. CMR góc BAC =2 CBH
8. Cho tam giác ABC có góc B =60, 2 tia phân giác AD và CE của tam giác cắt nhau tại I. CMR tam giác IDE cân
9. Cho tam giác ABC cân tại A, đường cao AH, HD, HE lần lượt là đường cao của tam giác AHB, AHC. trên tia đối của tia DH, EH lấy điểm M, N: DM=DB,  EN =EH.CMR: a) tam giác AMN và tam giác HMN cân b) góc MAN=2BAC

1