Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét \(\Delta ABC\)CÓ
\(BC^2=10^2=100\)
\(AB^2+AC^2=6^2+8^2=36+64=100\)
VÌ \(100=100\)
\(\Rightarrow BC^2=AB^2+AC^2\)
VẬY \(\Delta ABC\) VUÔNG TẠI A
trong tam giác ABC ta có :
AB2=62=36
AC2=82=64
BC2=102=100
ta thấy : 100=36+64 => BC2=AC2=AB2( định lý pytago đảo )
=> tam giác ABC vuông tại A
CHÚC BẠN HỌC TỐT !!!
a) Xét ΔABM và ΔACM có
AB=AC(ΔABC cân tại A)
\(\widehat{BAM}=\widehat{CAM}\)(AM là tia phân giác của \(\widehat{BAC}\))
AM chung
Do đó: ΔABM=ΔACM(c-g-c)
a) Ta có: ΔABM=ΔACM(cmt)
nên MB=MC(Hai cạnh tương ứng)
Xét ΔMBC có MB=MC(cmt)
nên ΔMBC cân tại M(Định nghĩa tam giác cân)
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
`Answer:`
a. Theo giả thiết: EI//AF
`=>\hat{EIB}=\hat{ACB}=\hat{ABC}=\hat{EBI}` (Do `\triangleABC` cân ở `A`)
`=>\triangleEBI` cân ở `E`
`=>EB=EI`
b. Theo giải thiết: BE=CF=>EI=CF`
Xét `\triangleOEI` và `\triangleOCF:`
`EI=CF`
`\hat{OEI}=\hat{OFC}`
`\hat{OIE}=\hat{OCF}`
`=>\triangleOEI=\triangleOFC(g.c.g)`
`=>OE=OF`
c. Ta có: `KB⊥AB` và `KC⊥AC`
`=>KB^2=KA^2-AB^2=KA^2-AC^2=KC^2`
`=>KB=KC`
Mà `BE=CF`
`=>KE^2=KB^2+BE^2=KC^2+CF^2=KF^2`
`=>KE=KF`
`=>\triangleEKF` cân ở `K`
Mà theo phần b. `OE=OF=>O` là trung điểm `EF`
`=>OK⊥EF`
a: góc B=90-30=60 độ
b: Xét ΔBAM vuông tại A và ΔBHM vuông tại H có
BM chung
góc ABM=góc HBM
=>ΔBAM=ΔBHM
c: Xét ΔBAH có BA=BH và góc ABH=60 độ
nên ΔABH đều
d: Xét ΔMBC có góc MBC=góc MCB=30 độ
nên ΔMBC cân tại M
e: BA=BH
MA=MH
=>BM là trung trực của AH
-TÍNH GÓC C:
Xét ΔABC có ˆA+ˆB+ˆC=180°
Do đó: góc C = 180°−ˆA−ˆB = 180-60-90 = 30độ (1)
-TÍNH GÓC ADB:
có: BD là tia phân giác góc ABC
Nên: góc ABD= góc CBD=1/2 góc ABC=1/2 . 60độ =30 độ (2)
⇒góc ABD = 60độ
Xét ΔABD có: gócA+ˆB+ˆD=180độ
Do đó:góc BDA=180 - A- ABD=180°−30°−90°=60°.
-CM ΔBDC cân:
Từ (2) ta có: góc DBC =30độ
Từ (1) ta có:góc ACB=30 độ
Từ (1) và (2) ta có :⇒ΔBCD cân tại D(ĐPCM)