K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
16 tháng 5 2021

Bài 1:

Xét tam giác $DHA$ và $DAB$ có:

$\widehat{D}$ chung

$\widehat{DHA}=\widehat{DAB}=90^0$

$\Rightarrow \triangle DHA\sim \triangle DAB$ (g.g)

$\Rightarrow \frac{DH}{DA}=\frac{DA}{DB}\Rightarrow DA^2=DH.DB(1)$

Tương tự: $\triangle BHA\sim \triangle BAD$ (g.g)

$\Rightarrow \frac{BH}{BA}=\frac{BA}{BD}\Rightarrow AB^2=BH.BD(2)$

Từ $(1);(2)\Rightarrow (\frac{AD}{AB})^2=\frac{DH}{BH}$

$\Rightarrow \frac{DH}{BH}=(\frac{6}{8})^2=\frac{9}{16}$

$\Rightarrow \frac{DH}{BD}=\frac{9}{25}$

\(\frac{S_{ADB}}{S_{HDA}}=\frac{AH.BD}{AH.HD}=\frac{BD}{HD}=\frac{25}{9}\)

AH
Akai Haruma
Giáo viên
16 tháng 5 2021

Hình vẽ 1:

a: Xet ΔAHB vuông tại H và ΔBCD vuông tại C có 

\(\widehat{ABH}=\widehat{BDC}\)

Do đó: ΔAHB\(\sim\)ΔBCD

b: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)

\(AH=\dfrac{AB\cdot AD}{BD}=4,8\left(cm\right)\)

c: \(HB=\dfrac{AB^2}{BD}=6,4\left(cm\right)\)

\(S=\dfrac{AH\cdot HB}{2}=2,4\cdot6,4=15,36\left(cm^2\right)\)

20 tháng 5 2022

hình nx bạn

a: Xét ΔDHA vuông tại H và ΔDAB vuông tại A có

góc HDA chung

=>ΔDHA đồng dạng với ΔDAB

=>DH/DA=DA/DB

=>DA^2=DH*DB

b: DB=căn 8^2+6^2=10cm

DH=6^2/10=3,6cm

8 tháng 3 2022

a. Xét tam giác AHB và tam giác BCD, có:

\(\widehat{AHB}=\widehat{BCD}=90^0\)

\(\widehat{ABH}=\widehat{CDB}\)  ( cùng phụ với \(\widehat{B}\) )

Vậy tam giác AHB đồng dạng tam giác BCD ( g.g )

b.Xét tam giác AHD và tam giác ABD, có:

\(\widehat{AHD}=\widehat{BAD}=90^0\)

\(\widehat{D}:chung\)

Vậy tam giác AHD đồng dạng tam giác ABD ( g.g )

\(\Rightarrow\dfrac{AD}{DB}=\dfrac{DH}{AD}\)

\(\Leftrightarrow AD^2=BD.DH\)

c. Áp dụng định lý pitago vào tam giác vuông ABD, có:

\(BD^2=AD^2+AB^2\)

\(\Rightarrow BD=\sqrt{3^2+4^2}=\sqrt{25}=5cm\)

Ta có:\(AD^2=BD.DH\) ( cmt )

\(\Leftrightarrow3^2=5DH\)

\(\Leftrightarrow9=5DH\)

\(\Rightarrow DH=1,8cm\)

Áp dụng dịnh lý pitago vào tam giác vuông AHD, có:

\(AD^2=AH^2+DH^2\)

\(\Rightarrow AH=\sqrt{AD^2-DH^2}=\sqrt{3^2-1,8^2}=\sqrt{5,76}=2,4cm\)

 

 

 

 

 

8 tháng 3 2022

a, Xét tam giác AHB và tam giác BCD có 

^AHB = ^BCD = 900

^ABH = ^BDC ( soletrong )

Vậy tam giác AHB ~ tam giác BCD (g.g) 

b, Xét tam giác AHD và yam giác BAD có 

^AHD = ^BAD = 900

^D _ chung 

Vậy tam giác AHD ~ tam giác BAD (g.g) 

\(\dfrac{AD}{BD}=\dfrac{HD}{AD}\Rightarrow AD^2=HD.BD\)

c, Theo định lí Pytago tam giác DAB vuông tại A

\(BD=\sqrt{AB^2+AD^2}=5cm\)

Lại có \(\dfrac{AH}{AB}=\dfrac{AD}{BD}\Rightarrow AH=\dfrac{AD.AB}{BD}=\dfrac{12}{5}cm\)

\(HD=\dfrac{AD^2}{BD}=\dfrac{9}{5}cm\)

12 tháng 3 2020

Bài 2:

A B C D H 1

a) Xét tam giác BDC vuông tại C có:

\(DC^2+BC^2=DB^2\)

\(\Rightarrow BD=\sqrt{DC^2+BC^2}\)( DC=AB)

\(\Rightarrow BD=10\left(cm\right)\)

b) tam giác BDA nhé

Xét tamg giác ADH và tam giác BDA có:

\(\hept{\begin{cases}\widehat{D1}chung\\\widehat{AHD}=\widehat{BAD}=90^0\end{cases}\Rightarrow\Delta ADH~\Delta BDA\left(g.g\right)}\)

c) Vì tam giác ADH đồng dạng với tam giác BDA (cmt)

\(\Rightarrow\frac{AD}{DH}=\frac{BD}{DA}\)( các cạnh t,.ứng tỉ lệ )

\(\Rightarrow AD^2=BD.DH\)

d) Xét tan giác AHB và tam giác BCD có:

\(\hept{\begin{cases}\widehat{AHB}=\widehat{BCD}=90^0\\\widehat{ABH}=\widehat{DBC}=45^0\end{cases}\Rightarrow\Delta AHB~\Delta BCD\left(g.g\right)}\)

( góc= 45 độ bạn tự cm nhé )

e) \(S_{ABD}=\frac{1}{2}AD.AB=\frac{1}{2}AH.BD\)

\(\Rightarrow AD.AB=AH.BD\)

\(\Rightarrow AH=4,8\left(cm\right)\)

Dùng Py-ta-go làm nốt tính DH
 

12 tháng 3 2020

Bài 1

A B C H I D

a) Áp dụng định lý Pytago vào tam giác ABC vuông tại A ta có:

\(AB^2+AC^2=BC^2\)

Thay AB=3cm, AC=4cm

\(\Rightarrow3^2+4^2=BC^2\)

<=> 9+16=BC2

<=> 25=BC2

<=> BC=5cm (BC>0)