K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2017

la+bl2=(a+b)2=a2+2ab+b2

(lal+lbl)2=a2+2labl+b2

mà 2labl \(\ge\)2ab

=>la+bl2\(\le\)(lal+lbl)2

=>la+bl\(\le\)lal+lbl

dấu bằng xảy ra khi ab\(\ge0\)

10 tháng 8 2020

a. Ta có :

\(\left|x+y\right|\le\left|x\right|+\left|y\right|\Leftrightarrow\left(\left|x\right|+\left|y\right|\right)^2\ge\left|x+y\right|^2=\left(x+y\right)^2\)

\(\Leftrightarrow x^2+y^2+2\left|xy\right|\ge x^2+2xy+y^2\)

\(\Leftrightarrow2\left|xy\right|\ge2xy\Leftrightarrow\left|xy\right|\ge xy\) ( luôn đúng )

Dấu "=" xảy ra <=> x và y cùng dấu 

Bài 3:

\(=\left(\dfrac{3}{5}+\dfrac{2}{7}+\dfrac{4}{35}\right)+\left(-\dfrac{1}{2}-\dfrac{1}{9}-\dfrac{7}{18}\right)+\dfrac{1}{131}\)

\(=\dfrac{21+10+4}{35}+\dfrac{-9-2-7}{18}+\dfrac{1}{131}\)

=1/131

Bài 5:

a: Phần nguyên là 0

b: Phần nguyên là -1

1 tháng 4 2017

Ta có: \(f\left(x\right)=ax^2+bx+c\)

Do a, c là hai số đối nhau nên a + c = 0

\(\Rightarrow\left\{{}\begin{matrix}f\left(1\right)=a+b+c\\f\left(-1\right)=a-b+c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}f\left(1\right)=b\\f\left(-1\right)=-b\end{matrix}\right.\) ( do a, c là 2 số đối nhau, a + c = 0 )

\(\Rightarrow f\left(1\right).f\left(-1\right)=b.\left(-b\right)=-b^2\)

\(b^2\ge0\Rightarrow-b^2\le0\)

\(\Rightarrow f\left(1\right).f\left(-1\right)\le0\) ( đpcm )

Vậy...

15 tháng 8 2017

\(\left\{{}\begin{matrix}x=\dfrac{a}{m}\Rightarrow x=\dfrac{2a}{2m}\\y=\dfrac{b}{m}\Rightarrow y=\dfrac{2b}{2m}\end{matrix}\right.\)

\(x< y\Rightarrow a< b\)

\(\Rightarrow\left\{{}\begin{matrix}a+a< a+b\Rightarrow2a< a+b\Rightarrow\dfrac{2a}{m}< \dfrac{a+b}{m}\Rightarrow\dfrac{2a}{2m}< \dfrac{a+b}{2m}\\b+b>a+b\Rightarrow2b>a+b\Rightarrow\dfrac{2b}{m}>\dfrac{a+b}{m}\Rightarrow\dfrac{2b}{2m}>\dfrac{a+b}{2m}\end{matrix}\right.\)\(\Rightarrow\dfrac{2a}{2m}< \dfrac{a+b}{2m}< \dfrac{2b}{2m}\)

\(\Leftrightarrow x< z< y\)

\(\rightarrowđpcm\)

15 tháng 8 2017

\(x< y\Rightarrow\dfrac{a}{m}< \dfrac{b}{m}\Rightarrow a< b\)

\(x=\dfrac{a}{m}=\dfrac{2a}{2m}=\dfrac{a+a}{2m}\\ y=\dfrac{b}{m}=\dfrac{2b}{2m}=\dfrac{b+b}{2m}\\ a< b\Rightarrow\dfrac{a+a}{2m}< \dfrac{a+b}{2m}< \dfrac{a+b}{2m}\Leftrightarrow x< z< y\)

16 tháng 8 2016

x<y suy ra a/m<b/m suy ra a<b (vì m<0)

mà a<b suy ra a+b < b+b

suy ra a+b<2b

suy ra a+b/2 <b

suy ra a+b/2m <b/m

suy ra a+b/2m< y

Suy ra z<y   (1)

Mặt khác a<b suy ra a+a <a+b

suy ra 2a <a+b

suy ra 2a/m <a+b/ m

suy ra a/m < a+b/2m

suy ra x<z    (2)

Từ (1) và (2)

suy ra x<z<y