K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 5 2019

Từ pt trên suy ra \(y=x+1\) thay xuông dưới:

\(\left(m-1\right)x^2+\left(x+1\right)^2+x-2\left(x+1\right)+2m-3=0\)

\(\Leftrightarrow mx^2+x+2m-4=0\)

Đặt \(f\left(x\right)=mx^2+x+2m-4=0\)

Để phương trình có 2 nghiệm thỏa mãn \(x_1< x_2< 2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=1-4m\left(2m-4\right)>0\\a.f\left(2\right)=m\left(4m+2+2m-4\right)>0\\\frac{x_1+x_2}{2}=\frac{-1}{2m}< 2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-8m^2+16m+1>0\\m\left(6m-2\right)>0\\\frac{4m+1}{2m}>0\end{matrix}\right.\) \(\Leftrightarrow\frac{1}{3}< m< \frac{4+3\sqrt{2}}{4}\)

NV
16 tháng 9 2020

\(\left\{{}\begin{matrix}9-3\left|x\right|\ge0\\9x^2-1>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-3\le x\le3\\\left[{}\begin{matrix}x>\frac{1}{3}\\x< -\frac{1}{3}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\frac{1}{3}< x\le\frac{1}{3}\\-3\le x< -\frac{1}{3}\end{matrix}\right.\)

\(\Rightarrow D_1=[-3;-\frac{1}{3})\cup(\frac{1}{3};3]\)

\(\left\{{}\begin{matrix}x+2\ge0\\x\left|x\right|+4\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\x\ne-2\end{matrix}\right.\) \(\Rightarrow x>-2\)

\(\Rightarrow D_2=\left(-2;+\infty\right)\)

\(\Rightarrow A=\left\{-1;1;2;3\right\}\)

NV
17 tháng 6 2020

\(f\left(x\right)\) xác định khi \(\frac{x-4}{1-x}\ge0\Leftrightarrow1< x\le4\)

\(g\left(x\right)\) xác định khi \(\frac{x^2+7x-10}{\left(3-x\right)^{2019}}=\frac{\left(x-2\right)\left(5-x\right)}{\left(3-x\right)^{2019}}\ge0\) \(\Rightarrow\left[{}\begin{matrix}2\le x< 3\\x\ge5\end{matrix}\right.\)

Giao lại ta được: \(2\le x< 3\)

NV
18 tháng 10 2020

Bạn tham khảo:

Câu hỏi của Lê Ngọc Cương - Toán lớp 9 | Học trực tuyến

NV
18 tháng 11 2019

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2-2xy=3\\x+y+xy=1\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\) với \(a^2\ge4b\)

\(\Rightarrow\left\{{}\begin{matrix}a^2-2b=3\\a+b=1\end{matrix}\right.\) \(\Rightarrow b=1-a\)

\(\Rightarrow a^2-2\left(1-a\right)=3\Leftrightarrow a^2+2a-5=0\)

\(\Rightarrow\left[{}\begin{matrix}a=-1+\sqrt{6}\Rightarrow b=2-\sqrt{6}\\a=-1-\sqrt{6}\Rightarrow b=2+\sqrt{6}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x_0+y_0=a=-1+\sqrt{6}\Rightarrow\left(x_0+y_0+1\right)^2=6\)

AH
Akai Haruma
Giáo viên
16 tháng 10 2020

Lời giải:

TXĐ: $x\neq -1$

Bài toán tương đương với chứng minh PT $2x+\frac{x^2-x+1}{x+1}=3$ có 2 nghiệm phân biệt.

Ta có:

$2x+\frac{x^2-x+1}{x+1}=3$

$\Rightarrow 2x^2+2x+x^2-x+1=3x+3$

$\Leftrightarrow 3x^2-2x-2=0$

Dễ thấy $3.(-1)^2-2(-1)-2\neq 0$ và $\Delta'=1+6=7>0$ nên PT $2x+\frac{x^2-x+1}{x+1}=3$ có 2 nghiệm pb khác $-1$

Ta có đpcm.

NV
21 tháng 9 2020

Bạn coi lại đề, ko có khái niệm 2 tập hợp lớn hơn / nhỏ hơn nhau

Nên \(D_2< D_1\) là vô nghĩa