K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2019

A B C K G M D N

a, \(\Delta BKCcó\left\{{}\begin{matrix}BM=MC\\BG=GK\end{matrix}\right.\)

=> GM là đường trung bình của \(\Delta BKC\)

=> \(GM=\frac{1}{2}KC\)

\(\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AM}=6\overrightarrow{GM}=3\overrightarrow{KC}\)

b, \(\overrightarrow{AB}+3\overrightarrow{AC}=\overrightarrow{AD}+\overrightarrow{DB}+3\overrightarrow{AD}+3\overrightarrow{DC}\)

\(=4\overrightarrow{AD}+\left(-3\overrightarrow{DC}\right)+3\overrightarrow{DC}\)

\(=4\overrightarrow{AD}\)

6 tháng 12 2019

Cho mình hỏi -3DC sao có vậy ạ

26 tháng 11 2022

Bài 2:

vecto AM=vecto AB+vecto BM

=vecto AB+2/3vecto BC

=vecto AB+2/3*(vecto BA+vecto AC)

=1/3*vecto AB+2/3*vecto AC

17 tháng 12 2023

a) Ta có:

\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}\)

         \(=\overrightarrow{AB}+k\overrightarrow{BC}\)

         \(=\overrightarrow{AB}+k\left(\overrightarrow{AC}-\overrightarrow{AB}\right)\)

         \(=\left(1-k\right)\overrightarrow{AB}+k\overrightarrow{AC}\)

b) \(\overrightarrow{NP}=\overrightarrow{AP}-\overrightarrow{AN}\)

             \(=\dfrac{2}{3}\overrightarrow{AC}-\dfrac{3}{4}\overrightarrow{AB}\)

Để \(AM\perp NP\)

\(\Rightarrow\overrightarrow{AM}.\overrightarrow{NP}=\overrightarrow{0}\)

\(\Rightarrow\left[\left(1-k\right)\overrightarrow{AB}+k\overrightarrow{AC}\right]\left(-\dfrac{3}{4}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}\right)=\overrightarrow{0}\)

\(\Leftrightarrow\dfrac{3\left(k-1\right)}{4}AB^2+\dfrac{2k}{3}AC^2+\dfrac{2\left(1-k\right)}{3}\overrightarrow{AB}.\overrightarrow{AC}-\dfrac{3k}{4}\overrightarrow{AB}.\overrightarrow{AC}=\overrightarrow{0}\)

\(\Leftrightarrow\dfrac{3\left(k-1\right)}{4}AB^2+\dfrac{2k}{3}AB^2+\dfrac{1-k}{3}AB^2-\dfrac{3k}{8}AB^2=0\)

\(\Leftrightarrow AB^2\left[\dfrac{3\left(k-1\right)}{4}+\dfrac{2k}{3}+\dfrac{1-k}{3}-\dfrac{3k}{8}\right]=0\)

\(\Leftrightarrow18\left(k-1\right)+16k+8\left(1-k\right)-9k=0\left(AB>0\right)\)

\(\Leftrightarrow17k=10\)

\(\Leftrightarrow k=\dfrac{10}{17}\)

NV
21 tháng 12 2022

Từ giả thiết ta có PN là đường trung bình tam giác ABC

\(\Rightarrow\overrightarrow{PN}=\dfrac{1}{2}\overrightarrow{BC}=\overrightarrow{BM}\)

Do đó:

\(\overrightarrow{BM}+\overrightarrow{NC}=\overrightarrow{PN}+\overrightarrow{NC}=\overrightarrow{PC}\)

b.

Theo tính chất trọng tâm: \(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}=\dfrac{2}{3}\left(\overrightarrow{AG}+\overrightarrow{GM}\right)\)

\(\Rightarrow\dfrac{1}{3}\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{GM}\Rightarrow2\overrightarrow{MG}=-\overrightarrow{AG}=\overrightarrow{GA}\)

\(\Rightarrow\overrightarrow{GB}+\overrightarrow{GC}+2\overrightarrow{MG}=\overrightarrow{GC}+\overrightarrow{GB}+\overrightarrow{GA}=\overrightarrow{0}\)

21 tháng 12 2022

Thầy ơi giúp em 1 câu hỏi nữa được không thầy