Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=căn 15^2+20^2=25cm
AH=15*20/25=12cm
HB=15^2/25=9cm
HC=25-9=16cm
AD là phân giác
=>BD/AB=CD/AC
=>BD/3=CD/4=(BD+CD)/(3+4)=25/7
=>BD=75/7cm; CD=100/7cm
b: ΔAHB vuông tại H có HI là đường cao
nên AI*AB=AH^2
ΔAHC vuông tại H có HK là đường cao
nên AK*AC=AH^2
=>AI*AB=AK*AC
c: AI*AB=AK*AC
=>AI/AC=AK/AB
=>ΔAIK đồng dạng với ΔACB
Áp dụng hệ thức lượng:
\(AB^2=BH.BC\)
\(\Leftrightarrow AB^2=BH\left(BH+CH\right)\)
\(\Leftrightarrow27=BH\left(BH+6\right)\)
\(\Leftrightarrow BH^2+6BH-27=0\Rightarrow\left[{}\begin{matrix}BH=3\\BH=-9< 0\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow BC=BH+CH=9\)
\(\Rightarrow AC=\sqrt{BC^2-AB^2}=3\sqrt{6}\)
Giải
b, Áp dụng hệ thức lượng vào trong tam giác vuông AHB
ta có : \(AH^2=AE.AB\left(1\right)\)
ÁP dụng hệ thức lượng vào trong tam giác vuông AHC
Ta có : \(AH^2=AF.AC\left(2\right)\)
Từ (1) , (2) \(\Rightarrow AB.AE=AC.AF\left(đpcm\right)\)
Cho tam giác ABC vuông tại A, AH là đường cao. Biết AB=15cm,HC=16cm.Tính BC,AH,HB,AC.