K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2021

Bạn bị thiếu phải ko

=>9x+4y=360 và 36/x-36/y=1/2

=>4y=360-9x và 36/x-36/y=1/2

=>y=90-2,25x và \(\dfrac{36}{x}-\dfrac{36}{90-2,25x}=\dfrac{1}{2}\)

=>\(\dfrac{3240-81x-36x}{x\left(90-2,25x\right)}=\dfrac{1}{2}\)

=>90x-2,25x^2=2(3240-117x)

=>-2,25x^2+90x-6840+234x=0

=>x=118,3 hoặc x=25,7

=>y=-176,175 hoặc y=32,175

15 tháng 8 2016

1) Ta có: \(\left(x^2+2x-5\right)^2=\left(x^2-x+5\right)^2.\)

<=> \(\left(x^2+2x-5\right)^2-\left(x^2-x+5\right)^2=0\)

<=> \(\left(3x-10\right)\left(2x^2+x\right)=0\)

<=> \(\left(3x-10\right)\cdot x\cdot\left(2x+1\right)=0\)

TH1: 3x-10=0 <=> x=10/3

TH2: x=0

TH3: 2x+1=0 <=>  x=-1/2

2) Ta có: \(\left(x-5\right)\left(x-6\right)\left(x+2\right)\left(x+3\right)=180\)

<=> \(\left(x-5\right)\left(x+2\right)\cdot\left(x-6\right)\left(x+3\right)=180\)

<=> \(\left(x^2-3x-10\right)\left(x^2-3x-18\right)=180\)

Đặt t = \(x^2-3x-14\)

Ta được pt <=> \(\left(t-4\right)\left(t+4\right)=180\)

<=> \(t^2-16=180\)

<=> \(t^2=196\)<=> \(\orbr{\begin{cases}t=14\\t=-14\end{cases}}\)

TH1: t=14 <=> \(x^2-3x-14=14\)

             <=> \(x^2-3x-28=0\)

            <=>  \(\orbr{\begin{cases}x=-4\\x=7\end{cases}}\)

TH2: t=-14 <=> \(x^2-3x-14=-14\)

<=>  \(x\left(x-3\right)=0\)

<=> \(\orbr{\begin{cases}x=0\\x=3\end{cases}}\)

26 tháng 3 2022

\(\dfrac{180}{x-4}-\dfrac{180}{x}=\dfrac{1}{2}\)

\(\Leftrightarrow\) \(\dfrac{2x\cdot180}{2x\left(x-4\right)}-\dfrac{2\cdot180\cdot\left(x-4\right)}{2x\left(x-4\right)}=0\)

\(\Leftrightarrow\) \(\dfrac{360x-360x+1440-x^2+4x}{2x\left(x-4\right)}=0\)

\(\Leftrightarrow\) \(\dfrac{-x^2+4x+1440}{2x\left(x-4\right)}=0\)

\(\Leftrightarrow-x^2+4x+1440=0\)

\(\Leftrightarrow-x^2+40x-36x+1440=0\)

\(\Leftrightarrow-x\cdot\left(x-40\right)\cdot\left(-36\right)\cdot\left(x-40\right)=0\)

\(\Leftrightarrow\left(x-40\right)\cdot\left(x-36\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-40=0\\x+36=0\end{matrix}\right.\)

 \(x-40=0\)

  \(x=0+40\)

 \(x=40\)

\(x+36=0\)

   \(x=0-36\)

   \(x=-36\)

\(\Leftrightarrow\left[{}\begin{matrix}x=40\\x=-36\end{matrix}\right.\)

26 tháng 3 2022

\(180\left(\dfrac{1}{x-4}-\dfrac{1}{x}\right)=\dfrac{1}{2}\)

\(\dfrac{1}{x-4}-\dfrac{1}{x}=\dfrac{1}{360}\left(đk:x\ne0,4\right)\)

\(\dfrac{x-x+4}{x\left(x-4\right)}=\dfrac{1}{360}\)

\(\dfrac{4}{x\left(x-4\right)}=\dfrac{1}{360}\)

\(x^2-4x=1440\)

\(x^2-4x+4=1444\)

\(\left(x-2\right)^2=1444=38^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=38\\x-2=-38\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=40\\x=-36\end{matrix}\right.\)

10 tháng 5 2022

360/X + 180/X + 5 = 30/60
=> 2.180/X + 180/X + 5 = 1/2
=> 3.180/X = 1/2 -5 =-9/2
=> 540/X = -9/2
=> X = -540.2/9
=> X = -120

 

15 tháng 8 2016

1/ (x-63)(x+10)(4x-188x-2520)

15 tháng 8 2016

2/ 9(x-1)(2x-1)(64x2 + 208x+32)/8

27 tháng 11 2022

\(P=\dfrac{20\left(x^2+6x+9\right)}{\left(3x+5+2x\right)\left(3x+5-2x\right)}+\dfrac{5\left(x-5\right)\left(x+5\right)}{\left(3x-2x-5\right)\left(3x+2x+5\right)}-\dfrac{\left(2x+3+x\right)\left(2x+3-x\right)}{3\left(x+3\right)\left(x+5\right)}\)

\(=\dfrac{20\left(x+3\right)^2}{5\left(x+1\right)\left(x+5\right)}+\dfrac{5\left(x-5\right)\left(x+5\right)}{\left(x-5\right)\cdot5\left(x+1\right)}-\dfrac{3\left(x+1\right)\left(x+3\right)}{3\left(x+3\right)\left(x+5\right)}\)

\(=\dfrac{5\left(x+3\right)^2}{\left(x+1\right)\left(x+5\right)}+\dfrac{\left(x+5\right)}{x+1}-\dfrac{x+1}{x+5}\)

\(=\dfrac{5x^2+30x+45+x^2+10x+25-x^2-2x-1}{\left(x+5\right)\left(x+1\right)}\)

\(=\dfrac{5x^2+38x+69}{\left(x+5\right)\left(x+1\right)}\)

\(=\dfrac{5x^2+38x+69}{x^2+6x+5}\)

Để P là số nguyên thì \(5x^2+30x+25+8x+34⋮x^2+6x+5\)

=>\(8x+34⋮x^2+6x+5\)

=>\(\left\{{}\begin{matrix}8x+34⋮x+1\\8x+34⋮x+5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}8x+8+26⋮x+1\\8x+40-6⋮x+5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x+1\in\left\{1;-1;2;-2;13;-13;26;-26\right\}\\x+5\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\end{matrix}\right.\)

=>\(x\in\left\{-2;1\right\}\)