K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2016

16x4 - 64 = 16(x4 - 4) = 16[(x2)2 - 22] = 16(x2 - 2)(x2 + 2) = 16[x2 -\(\left(\sqrt{2}\right)^2\)](x2 + 2) = 16\(\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\left(x^2+2\right)\)

\(16x^4-64\)

\(=16\left(x^4-4\right)\)

\(=16\left(x^2-2\right)\left(x^2+2\right)\)

\(=16\left(x^2-\left(\sqrt{2}\right)^2\right)\left(x^2+2\right)\)

\(=16\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\left(x^2+2\right)\)

Bài này ra kết quả trên là lớp 9 . Còn lớp 8 là : \(16\left(x^2-2\right)\left(x^2+2\right)\)

25 tháng 7 2019

Cậu ới ời ơi

25 tháng 7 2019

\(x\le-2\)

3 tháng 8 2016

đề yêu cầu cái j

12 tháng 11 2016

<!> là gì vậy ak? 

12 tháng 11 2016

tôi nghĩ là giao thừa 

11 tháng 7 2017

\(\left(\frac{9}{x.x^2-9.x}+\frac{1}{x+_{ }3}\right):\left(\frac{x-3}{x.3+x^2}-\frac{x}{3.x+9}\right)\) đk (x\(\ne\)o; công trừ 3)

<=>\(9+\frac{x.\left(x-3\right)}{x.\left(x^2-9\right)}\):\(\frac{3.\left(x-3\right)-x^2}{3x.\left(x+3\right)}\)

<=>\(-\frac{3}{x-3}=\frac{3}{3-x}\)

12 tháng 7 2017

Bạn ơi mk k hiểu sao lại ra bước 2 ... bạn giải chi tiết giùm mk nha

dù sao cx cảm ơn bạn đã giúp mk

AH
Akai Haruma
Giáo viên
31 tháng 12 2018

a)

Đặt

\(\sqrt{1+x}=a; \sqrt{1-x}=b\Rightarrow \left\{\begin{matrix} ab=\sqrt{(1+x)(1-x)}=\sqrt{1-x^2}\\ a\geq b\\ a^2+b^2=2\end{matrix}\right.\)

Khi đó:

\(A=\frac{\sqrt{1-\sqrt{1-x^2}}(\sqrt{(1+x)^3}+\sqrt{(1-x)^3})}{2-\sqrt{1-x^2}}\)

\(=\frac{\sqrt{\frac{a^2+b^2}{2}-ab}(a^3+b^3)}{a^2+b^2-ab}=\frac{\sqrt{\frac{a^2+b^2-2ab}{2}}(a+b)(a^2-ab+b^2)}{a^2+b^2-ab}\)

\(=\sqrt{\frac{a^2-2ab+b^2}{2}}(a+b)=\sqrt{\frac{(a-b)^2}{2}}(a+b)=\frac{1}{\sqrt{2}}|a-b|(a+b)\)

\(=\frac{1}{\sqrt{2}}(a-b)(a+b)=\frac{1}{\sqrt{2}}(a^2-b^2)=\frac{1}{\sqrt{2}}[(1+x)-(1-x)]=\sqrt{2}x\)

AH
Akai Haruma
Giáo viên
31 tháng 12 2018

Sửa đề: \(\frac{25}{(x+z)^2}=\frac{16}{(z-y)(2x+y+z)}\)

Ta có:

Áp dụng tính chất dãy tỉ số bằng nhau thì:

\(k=\frac{a}{x+y}=\frac{5}{x+z}=\frac{a+5}{2x+y+z}=\frac{5-a}{z-y}\) ($k$ là một số biểu thị giá trị chung)

Khi đó:

\(\frac{16}{(z-y)(2x+y+z)}=\frac{25}{(x+z)^2}=(\frac{5}{x+z})^2=k^2\)

Mà: \(k^2=\frac{a+5}{2x+y+z}.\frac{5-a}{z-y}=\frac{25-a^2}{(2x+y+z)(z-y)}\)

Do đó: \(\frac{16}{(z-y)(2x+y+z)}=\frac{25-a^2}{(2x+y+z)(z-y)}\Rightarrow 16=25-a^2\)

\(\Rightarrow a^2=9\Rightarrow a=\pm 3\)

Suy ra:
\(Q=\frac{a^6-2a^5+a-2}{a^5+1}=\frac{a^5(a-2)+(a-2)}{a^5+1}=\frac{(a-2)(a^5+1)}{a^5+1}=a-2=\left[\begin{matrix} 1\\ -5\end{matrix}\right.\)

4 tháng 11 2016

2x2 - 3x - 2 = 2x2 + x - 4x - 2 = x(2x + 1) - 2(2x + 1) = (x - 2)(2x + 1)

Bạn cần luyện tập phân tích đa thức thành nhân tử nha.