K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2018

(=)(1/64)^x=(-1/8)^2^7

(=)(1/64)^x=(1/64)^7

=>x=7

17 tháng 8 2018

\(\left(\frac{1}{64}\right)^x=\left(-\frac{1}{8}\right)^{14}\)

\(=\left(\frac{1}{64}\right)^x=\left(\frac{1}{64}\right)^7\)

\(\Rightarrow x=7\)

Vậy x = 7 

14 tháng 8 2021

Bài 1 : 

\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Theo tính chất dãy tỉ số bằng nhau 

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\Rightarrow x=16;y=24;z=30\)

bài 2 : 

Đặt \(x=2k;y=5k\Rightarrow xy=10k^2=10\Leftrightarrow k^2=1\Leftrightarrow k=\pm1\)

Với k = 1 thì x = 2 ; y = 5

Với k = - 1 thì x = -2 ; y = -5

dễ mà x = 2

     và  x = -10/3

30 tháng 7 2018

đặt \(A=1+\frac{1}{3}+\frac{1}{3^2}+.....+\frac{1}{3^n}\)

\(\Rightarrow3A=3+1+\frac{1}{3}+...+\frac{1}{3^{n-1}}\)

\(\Rightarrow3A-A=(3+1+...+\frac{1}{3^{n-1}})-(1+\frac{1}{3}+...+\frac{1}{3^n})\)

\(\Rightarrow2A=3-\frac{1}{3^n}\)

\(\Rightarrow A=(3-\frac{1}{3^n})\div2\)

Đặt A=1 + 1/3 + 1/32 + 1/33+...+  1/3n

=>  3A= 3 + 1 + 1/3 + 1/3+...+ 1/3n-1

=>   3A - A = 2A = 3 - 1/3n

=> 2A =(3n+1 - 1) / 3n

=> A= (3n+1 - 1) / 3n.2

K cho mk nha!

27 tháng 8 2018

Ta có : |x-3| và |x-4| và |x-5| đều lớn hơn hoặc bằng 0

=> |x-3|+|x-4|+|x-5| = x-10 lớn hơn hoặc bằng 0

=> x - 10 lớn hơn hoặc bằng 0

=> x lớn hơn hoặc bằng 10

=> x - 3 + x - 4 + x - 5 = x - 10

=> 3x - 12 = x - 10

=> 3x - x = -10 + 12

=> 2x = 2

=> x = 1 ( loại )

Vậy x thuộc rỗng

27 tháng 8 2018

Mk cần một cái kết luận chi tiết hơn

21 tháng 10 2017

Đặt \(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{20}}\)

\(\Rightarrow2A=2+1+\frac{1}{2}+...+\frac{1}{2^9}\)

\(\Rightarrow2A-A=\left(2+1+\frac{1}{2}+...+\frac{1}{2^9}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)

\(\Rightarrow A=2-\frac{1}{2^{10}}\)

21 tháng 10 2017

đặt \(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\)

\(2A=2+1+\frac{1}{2}+...+\frac{1}{2^9}\)

\(2A-A=\left(2+1+\frac{1}{2}+...+\frac{1}{2^9}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)

\(A=2-\frac{1}{2^{10}}\)

25 tháng 7 2019

GIải:

Ta có: \(2x=3y\) => \(\frac{x}{3}=\frac{y}{2}\) => \(\frac{x}{15}=\frac{y}{10}\)

   \(4y=5z\) => \(\frac{y}{5}=\frac{z}{4}\) => \(\frac{y}{10}=\frac{z}{8}\)

=> \(\frac{x}{15}=\frac{y}{10}=\frac{z}{8}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

   \(\frac{x}{15}=\frac{y}{10}=\frac{z}{8}=\frac{x+y+z}{15+10+8}=\frac{66}{33}=2\)

=> \(\hept{\begin{cases}\frac{x}{15}=2\\\frac{y}{10}=2\\\frac{z}{8}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.15=30\\y=2.10=20\\z=2.8=16\end{cases}}\)

Vậy x = 30; y = 20 và z = 16

25 tháng 7 2019

ta có : \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\)

           \(4y=5z\Rightarrow\frac{y}{5}=\frac{z}{4}\)

\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{8}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có :

\(\frac{x}{15}=\frac{y}{10}=\frac{z}{8}=\frac{x+y+z}{15+10+8}=\frac{66}{33}=2\)

\(\rightarrow\frac{x}{15}=2\Rightarrow x=30\)

\(\rightarrow\frac{y}{10}=2\Rightarrow y=20\)

\(\rightarrow\frac{z}{8}=2\Rightarrow z=16\)

AH
Akai Haruma
Giáo viên
24 tháng 3 2019

Lời giải:

\(x^2\geq 0, \forall x\in\mathbb{R}\)

\(x^8=(x^4)^2\geq 0, \forall x\in\mathbb{R}\)

\(\Rightarrow G(x)=2+7x^2+x^8\geq 2+7.0+0>0, \forall x\in\mathbb{R}\)

Như vậy, $G(x)\neq 0$ với mọi $x\in\mathbb{R}$. Suy ra đa thức $G(x)$ không có nghiệm thực.

28 tháng 3 2019

Cảm ơn ạ