Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài toán tổng quát:
Với mọi n\(\in\)N* ta có: \(\frac{1}{n^3}< \frac{1}{n^3-n}=\frac{1}{n\left(n^2-1\right)}=\frac{1}{\left(n-1\right)n\left(n+1\right)}\)
Áp dụng vào bài toán:
\(\frac{1}{5^3}+\frac{1}{6^3}+\frac{1}{7^3}+...+\frac{1}{2004^3}< \frac{1}{4.5.6}+\frac{1}{5.6.7}+\frac{1}{6.7.8}+...+\frac{1}{2003.2004.2005}\)
mà \(\frac{1}{4.5.6}+\frac{1}{5.6.7}+\frac{1}{6.7.8}+...+\frac{1}{2003.2004.2005}\)
\(=\frac{1}{2}\left(\frac{2}{4.5.6}+\frac{2}{5.6.7}+\frac{2}{6.7.8}...+\frac{2}{2003.2004.2005}\right)\)
\(=\frac{1}{2}\left(\frac{1}{4.5}-\frac{1}{5.6}+\frac{1}{5.6}-\frac{1}{6.7}+\frac{1}{6.7}-\frac{1}{7.8}...+\frac{1}{2003.2004}-\frac{1}{2004.2005}\right)\)
\(=\frac{1}{2}\left(\frac{1}{4.5}-\frac{1}{2003.2004}\right)=\frac{1}{40}-\frac{1}{2.2003.2004}< \frac{1}{40}\)
=>\(\frac{1}{3.4.5}+\frac{1}{4.5.6}+\frac{1}{5.6.7}+...+\frac{1}{2002.2003.2004}< \frac{1}{40}\)
Ta có: \(n^3-n< n^3\forall n\)
mà: \(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\)
Nên: \(\left(n-1\right)n\left(n+1\right)< n^3\Leftrightarrow\dfrac{1}{\left(n-1\right)n\left(n+1\right)}>\dfrac{1}{n^3}\)
Trở lại bài toán:
\(SV=\dfrac{1}{5^3}+\dfrac{1}{6^3}+\dfrac{1}{7^3}+...+\dfrac{1}{2004^3}< \dfrac{1}{\left(5-1\right).5.\left(5+1\right)}+\dfrac{1}{\left(6-1\right).6.\left(6+1\right)}+\dfrac{1}{\left(7-1\right).7.\left(7+1\right)}+...+\dfrac{1}{\left(2004-1\right).2004.\left(2004+1\right)}\)
\(SV< \dfrac{1}{4.5.6}+\dfrac{1}{5.6.7}+\dfrac{1}{6.7.8}+...+\dfrac{1}{2003.2004.2005}=\dfrac{1}{2}\left(\dfrac{1}{4.5}-\dfrac{1}{5.6}+\dfrac{1}{5.6}-\dfrac{1}{6.7}+\dfrac{1}{6.7}-\dfrac{1}{7.8}+...+\dfrac{1}{2003.2004}-\dfrac{1}{2004.2005}\right)=\dfrac{1}{2}\left(\dfrac{1}{4.5}-\dfrac{1}{2004.2005}\right)=\dfrac{1}{2.4.5}-\dfrac{1}{2.2004.2005}=\dfrac{1}{40}-\dfrac{1}{2.2004.2005}< \dfrac{1}{40}\left(đpcm\right)\)
\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{3004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)
\(\Rightarrow P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{5\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}-\frac{2\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}{3\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}\)
\(\Rightarrow P=\frac{1}{5}-\frac{2}{3}\)
\(\Rightarrow P=\frac{3}{15}-\frac{10}{15}\)
\(\Rightarrow P=\frac{-7}{15}\)
Vậy \(P=\frac{-7}{15}\)