Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tập hợp gồm các kết quả có thể xảy ra đối với số xuất hiện trên thẻ rút ra là: B = {1, 2, 3, …, 51, 52}.
Số phần tử của B là 52.
a) Trong các số từ 1 đến 52 có ba số chia 17 dư 2 là: 2, 19, 36. Trong 3 số trên, có một số chia 3 dư 1 là 19.
Vậy có một kết quả thuận lợi cho biến cố “Số xuất hiện trên thẻ được rút ra là số chia cho 17 dư 2 và chia cho 3 dư 1” là: 19.
Vì thế, xác suất của biến cố trên là: \(\dfrac{1}{{52}}\)
b) Có tám kết quả thuận lợi cho biến cố “Số xuất hiện trên thẻ được rút ra là số có chứa chữ số 5” là: 5, 15, 25, 35, 45, 50, 51, 52.
Vì thế, xác suất của biến cố trên là: \(\dfrac{8}{{52}} = \dfrac{2}{{13}}\)
a) Tập hợp M gồm các kết quả có thể xảy ra đối với số xuất hiện trên thẻ được rút ra là:
M = {1, 2, 3, …, 51, 52}
b) Trong các số 1, 2, 3, …, 51, 52, có chín số bé hơn 10 là: 1, 2, 3, 4, 5, 6, 7, 8, 9.
Vậy có chín kết quả thuận lợi cho biến cố “Số xuất hiện trên thẻ để rút ra là số bé hơn 10” là: 1, 2, 3, 4, 5, 6, 7, 8, 9 (lấy ra từ tập hợp M = {1, 2, 3, …, 51, 52}).
c) Trong các số 1, 2, 3, …, 51, 52, có ba số chia cho 4 và 5 đều có số dư là 1 là: 1, 21, 41
Vậy có ba kết quả thuận lợi cho biến cố “Số xuất hiện trên thẻ để rút ra là số chia cho 4 và 5 đều có số dư là 1” là: 1, 21, 41 (lấy ra từ tập hợp M = {1, 2, 3, …, 51, 52}).
Tập hợp gồm các kết quả có thể xảy ra đối với số xuất hiện trên thẻ rút ra là: B = {1, 2, 3, …, 51, 52}.
Số phần tử của B là 52.
a) Có chín kết quả thuận lợi cho biến cố “Số xuất hiện trên thẻ được rút ra là số có một chữ số” là: 1, 2, 3, 4, 5, 6, 7, 8, 9.
Vì thế, xác suất của biến cố trên là: \(\dfrac{9}{{52}}\)
b) Có ba kết quả thuận lợi cho biến cố “Số xuất hiện trên thẻ được rút ra là số khi chia cho 4 và 5 đều có số dư là 1” là: 1, 21, 41.
Vì thế, xác suất của biến cố trên là: \(\dfrac{3}{{52}}\)
c) Ta có: \(4 = 0 + 4 = 1 + 3 = 2 + 2\)
Có năm kết quả thuận lợi cho biến cố “Số xuất hiện trên thẻ được rút ra là số có tổng các chữ số bằng 4” là: 4, 13, 22, 31, 40.
Vì thế, xác suất của biến cố trên là: \(\dfrac{5}{{52}}\)
Các thẻ mang số nguyên tố là các thẻ có số 2;3;5;7
\(n_{\Omega}=10\)
A: "Các thẻ có mang số trên thẻ là số nguyên tố"
\(\rightarrow n_A=4\\ \Rightarrow P_A=\dfrac{n_A}{n_{\Omega}}=\dfrac{4}{10}=\dfrac{2}{5}\)
Sự kiện trên còn được gọi là biến cố trong trò chơi rút thẻ từ trong hộp.
a) \(C=\left\{1,2,3,...,20\right\}\) hay \(C=\left\{n\inℕ^∗|n\le20\right\}\)
b) Số phần tử của không gian mẫu \(\left|\Omega\right|=20\)
Gọi A là biến cố: "Số được rút ra là số chia cho 2 và 3 đều có số dư là 1."
Xét số \(a\) bất kì thỏa mãn \(a\equiv1\left[2\right]\) và \(a\equiv1\left[3\right]\). Khi đó \(a-1⋮2\) và \(a-1⋮3\). Do \(ƯCLN\left(2,3\right)=1\) nên từ đây suy ra \(a-1⋮6\) hay \(a\equiv1\left[6\right]\).
Ngược lại, nếu \(a\equiv1\left[6\right]\) thì \(a=6b+1\left(b\inℕ\right)\). Khi đó vì \(6b⋮2,6b⋮3\) nên \(a=6b+1\equiv1\left[2\right],\equiv1\left[3\right]\)
Như vậy, \(\left\{{}\begin{matrix}a\equiv1\left[2\right]\\a\equiv1\left[3\right]\end{matrix}\right.\Leftrightarrow a\equiv1\left[6\right]\)
Do đó biến cố A tương đương với biến cố: "Số được rút ra chia 6 dư 1".
Khi đó các kết quả thuận lợi cho A là \(1,7,13,19\)
\(\Rightarrow\left|A\right|=4\)
\(\Rightarrow P\left(A\right)=\dfrac{\left|A\right|}{\left|\Omega\right|}=\dfrac{4}{20}=\dfrac{1}{5}\)
a) \(C=\left\{x\in N\text{|}1\le x\le20\right\}\)
b) \(BCNN\left(2,3\right)=6\)
Vậy các số đó là \(6\cdot1+1=7\),\(6\cdot2+1=13\),\(6\cdot3+1=19\)
Xác suất biến cố đó là: \(\dfrac{3}{20}=0,15\)