Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3 . 6 = 3 . 4 + 2 . 3 rùi đấy bạn, bn xét từng tích rùi sẽ thấy thôi.
\(A=1\left(2+2\right)+2\left(2+3\right)+3\left(2+4\right)+.....+\left(n-1\right)\left(2+n\right)\)
\(\Leftrightarrow A=1.2+1.2+2.3+2.2+3.4+2.3+....+\left(n-1\right)n+2\left(n-1\right)\)
\(\Leftrightarrow A=\left(1.2+2.3+.....+\left(n-1\right)n\right)+2\left(1+2+3+....+\left(n-1\right)\right)\)
Giả sử A=B+C
Với \(\begin{cases}B=1.2+2.3+.....+\left(n-1\right)n\\C=2\left[1+2+....+\left(n-1\right)\right]\end{cases}\)
Ta có
\(3B=1.2.\left(3-0\right)+2.3.\left(4-1\right)+......+\left(n-1\right)n\left[\left(n+1\right)-\left(n-2\right)\right]\)
\(\Rightarrow3B=1.2.3-0.1.2+2.3.4-1.2.3+.....+\left(n-1\right)n\left(n+1\right)-\left(n-2\right)\left(n-1\right)n\)
\(\Rightarrow B=\frac{\left(n-1\right)n\left(n+1\right)}{3}\)
Mặt khác
\(C=2\left[1+2+....+\left(n-1\right)\right]\)
\(\Rightarrow C=2.\frac{\left[\left(n-1\right)+1\right]n}{2}=n^2\)
\(\Rightarrow A=\frac{\left(n-1\right)n\left(n+1\right)}{3}+n^2\)
Vậy \(A=\frac{\left(n-1\right)n\left(n+1\right)}{3}+n^2\)
A = 1.4 + 2.5 + 3.6 + ... + 99.102
A = 1.(2 + 2) + 2.(3 + 2) + 3.(4 + 2) + ... + 99.(100 + 2)
A = (1.2 + 2.3 + 3.4 + ... + 99.100) + (1.2 + 2.2 + 3.2 + ... + 99.2)
Đặt B = 1.2 + 2.3 + 3.4 + ... + 99.100
3B = 1.2.(3-0) + 2.3.(4-1) + 3.4.(5-2) + ... + 99.100.(101-98)
3B = 1.2.3 - 0.1.2 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100
3B = 99.100.101
B = 33.100.101 = 333300
A = 333300 + 2.(1 + 2 + 3 + ... + 99)
A = 333300 + 2.(1 + 99).99:2
A = 333300 + 100.99
A = 333300 + 9900
A = 343200
A = 1.4 + 2.5 + 3.6 +...+ 99.102
A = 1(2+2)+2(3+2)+3(4+2)+.+99(100+2)
A = 1.2+1.2+2.3+2.2+3.4+3.2+.+99.100+99.2
A = (1.2+2.3+3.4+.+99.100)+2(1+2+3+.+99)
Đặt A = 1.4 + 2.5 + 3.6 + ... + 100.103
= 1.(2 + 2) + 2.(3 + 2) + 3.(4 + 2) +.... + 100.(101 + 2)
= 1.2 + 2.3 + 3.4 + ... + 100.101 + (1.2 + 2.2 + 3.2 + ... + 100.2)
= 1.2 + 2.3 + 3.4 + ... + 100.101 + 2(1 + 2 + 3 + .... + 100)
= 1.2 + 2.3 + 3.4 + .... + 100.101 + 2.100.(100 + 1) : 2
= 1.2 + 2.3 + 3.4 + ... + 100.101 + 10100
Đặt B = 1.2 + 2.3 + 3.4 + .... + 100.101
=> 3B = 1.2.3 + 2.3.3 + 3.4.3 + .... + 100.101.3
=> 3B = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 100.101.(102 - 99)
=> 3B = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + .... + 100.101.102 - 99.100.101
=> 3B = 100.101.102
=> B = 343400
Khi đó A = 343400 - 10100 = 333300
\(A=1\cdot4+2\cdot5+3\cdot6+...+n\left(n+3\right)\)
\(=1\left(1+3\right)+2\left(2+3\right)+3\left(3+3\right)+...+n\left(n+3\right)\)
\(=\left(1^2+2^2+...+n^2\right)+3\left(1+2+3+...+n\right)\)
\(=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}+3\cdot\dfrac{n\left(n+1\right)}{2}\)
\(=\dfrac{n\left(n+1\right)\left(2n+1\right)+9n\left(n+1\right)}{6}\)
\(=\dfrac{n\left(n+1\right)\left(2n+1+9\right)}{6}\)
\(=\dfrac{n\left(n+1\right)\left(2n+10\right)}{6}=\dfrac{n\left(n+1\right)\left(n+5\right)}{3}\)
Ta thấy: 1.4 = 1.(1 + 3)
2.5 = 2.(2 + 3)
3.6 = 3.(3 + 3)
4.7 = 4.(4 + 3)
…….
n(n + 3) = n(n + 1) + 2n
Vậy C = 1.2 + 2.1 + 2.3 + 2.2 + 3.4 + 2.3 + … + n(n + 1) +2n
C = 1.2 + 2 +2.3 + 4 + 3.4 + 6 + … + n(n + 1) + 2n
C = [1.2 +2.3 +3.4 + … + n(n + 1)] + (2 + 4 + 6 + … + 2n)
⇒ 3C = 3.[1.2 +2.3 +3.4 + … + n(n + 1)] + 3.(2 + 4 + 6 + … + 2n)
3C = 1.2.3 + 2.3.3 + 3.4.3 + … + n(n + 1).3 + 3.(2 + 4 + 6 + … + 2n)
3C = n(n + 1)(n + 2) +
⇒ C = + =