K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2020

Ta có 

\(a^3+b^3+...+n^3=\left(a+b+...+n\right)^2\) 

\(\Rightarrow1^3+2^3+3^3+...+10^3=\left(1+2+3+...+100\right)^2\)   

\(1+2+3+...+100\) 

Số số hạng 

\(\left(100-1\right):1+1=100\)     

Tổng 

\(\left(100+1\right)\cdot100:2=5050\)   

\(5050^2=25502500\)   

Vậy \(1^3+2^3+...+100^3=25502500\)

9 tháng 10 2020

\(S=1+2+...+100\)

\(=\left(1+100\right)+\left(2+99\right)+...+\left(50+51\right)\)

\(=101+101+...+101\)

Số các số hạng là:(100-1):1+1=100

=>Có 50 cặp có tổng là 101

Ta có:101.50=5050

Số số hạng : (100-2):1+ 1=99 (số)

Tổng = (100+2)x99:2 = 5049 

Bài này áp dụng công thức tính số số hạng và tổng, không vận dụng nâng cao gì cả nhé

2 tháng 11 2023

hmmmmmmmmmmmmmmmmmmmmmmm 

13 tháng 9 2020

\(A=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-...-\frac{100}{3^{100}}\)

\(\Rightarrow3A=1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)

\(\Rightarrow3A+A=1+\left(\frac{1}{3}-\frac{2}{3}\right)+\left(\frac{-2}{3^2}+\frac{3}{3^2}\right)+\left(\frac{3}{3^3}-\frac{4}{3^3}\right)+...+\left(\frac{-98}{3^{98}}+\frac{99}{3^{98}}\right)+\left(\frac{99}{3^{99}}-\frac{100}{3^{99}}\right)-\frac{100}{3^{100}}\)

\(\Rightarrow4A=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow3.4A=3-1+\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}-\frac{100}{3^{99}}\)

\(\Rightarrow3.4A+4A=3+\left(1-1\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{3^2}-\frac{1}{3^2}\right)+...+\left(\frac{1}{3^{98}}-\frac{1}{3^{98}}\right)-\frac{101}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow16A=3-\frac{99}{3^{99}}-\frac{100}{3^{100}}< 3\Rightarrow A< \frac{3}{16}< \frac{3}{4}\)

7 tháng 3 2019

tham khảo: Câu hỏi của Ngô Văn Nam - Toán lớp 6 - Học toán với OnlineMath

Bạn tham khảo link này nhé.

Câu hỏi của Ngô Văn Nam - Toán lớp 6 - Học toán với OnilneMath

1/ 1 + (-2) + 3 + (-4) + . . . + 19 + (-20)

=1-2+3-4+...+19-20

=(1-2)+(3-4)+...+(19-20)

=(-1)+(-1)+...+(-1)
=(-1).10

=-10

2/ 1 – 2 + 3 – 4 + . . . + 99 – 100

=(1-2)+(3-4)+...+(99-100)

=(-1)+(-1)+...+(-1)

=(-1).50

=-50

3/ 2 – 4 + 6 – 8 + . . . + 48 – 50

 =(2-4)+(6-8)+...+(48-50)

 =(-2)+(-2)+...+(-2)

 =(-2).13

 =-26

4/ – 1 + 3 – 5 + 7 - . . . . + 97 – 99

=(-1)+(3-5)+(7-9)+...+(97-99)

=(-1)+(-2)+(-2)+...+(-2)

=(-1)+(-2).45

=(-1)+(-90)

=(-91)

5/ 1 + 2 – 3 – 4 + . . . . + 97 + 98 – 99 - 100

=(1+2-3-4)+...+(97 + 98 – 99 - 100)

=(-4)+...+(-4)

=(-4).25

=-100

\(HT\)

16 tháng 11 2021

1/ \(1+(-2)+3+(-4)+...+19+(-20)\)

\(=(-1+3+5+...+19)-(2+4+6+...+20)\)

\(=(19-1):2+1=10\)

\(=(1+19).10:2-(20+2).10:2\)

\(=100-110\)

\(=-10\)

2/ \(1 – 2 + 3 – 4 + . . . + 99 – 100\)

\(= ( 1 - 2 ) + ( 3 - 4) + .... + ( 99 - 100 )\)

\(= -1 + ( -1) + ....+ ( -1)\)

\(=(-1).50\)

\(=-50\)

3/ \( 2 – 4 + 6 – 8 + . . . + 48 – 50\)

\(= 2 +( – 4 + 6)+( – 8+10) + . . . +( -44+46)+ ( 48 – 50)\)

\(= 2+2+2+...+2+( -2) \)

\(= 2.12 +( -2 ) \)

\(=22\)

4/ \(-1+3-5+7-...+97-99\)

\(= ( -1 + 3 ) + ( -5 + 7 )+....+( -93 +95 ) + ( 97 - 99 )\)

\(= -2+( -2)+...+( -2)+2\)

\(= -2.24+2\)

\(=-46\)

5/ \( 1+2-3-4+...+97+98-99-100\)

\(= ( 1+2-3-4)+...+( 97+98-99-100)\)

\(= -4+...+( -4)\)

\(=(-4).25\)

\(=-100\)

à mik cs đáp án đầy đu rùi nha bnaj

⇒4A=4+42+43+...+4100

⇒4A−A=(4+42+43+...+4100)−(1+4+42+...+499)

⇒3A=4100−1<4100=B

⇒A<B3

20 tháng 10 2021

Đáp án:

Giải thích các bước giải:

 a. A=1+(2-3)+(-4+5)+(6-7)+...+(-300+301)+302

A=1-1+1-1+1-1+...+1+302

A=1+302

A=303